Switched to more modular structure
This commit is contained in:
parent
3901e5c0f8
commit
e781b46ca5
27
file_utility.py
Normal file
27
file_utility.py
Normal file
@ -0,0 +1,27 @@
|
||||
from PIL import Image
|
||||
|
||||
def openImageList(list, resize: bool = True):
|
||||
stack = []
|
||||
for path in list:
|
||||
img = Image.open(path)
|
||||
if resize == True:
|
||||
img = img.resize((1280, 720))
|
||||
stack.append(img)
|
||||
return stack
|
||||
|
||||
def saveStacktoFile(stack, quality: int = 75):
|
||||
'''Saves the arrays in the stack returned by the get exposure stack function to files'''
|
||||
|
||||
print("Saving..")
|
||||
i = 0
|
||||
path = []
|
||||
for array in stack:
|
||||
i += 1
|
||||
image = Image.fromarray(array)
|
||||
image.save(f"image_nr{i}.jpg", quality=quality)
|
||||
path.append(f"image_nr{i}.jpg")
|
||||
return path
|
||||
|
||||
def saveResultToFile(hdr_image , output_path: str = '/', quality: int = 75):
|
||||
image = Image.fromarray(hdr_image)
|
||||
image.save(f"{output_path}_hdr.jpg", quality=quality)
|
23
main.py
23
main.py
@ -1,9 +1,16 @@
|
||||
import numpyHDR
|
||||
import numpyHDR as hdr
|
||||
import picamburst as pcb
|
||||
import file_utility as file
|
||||
|
||||
'''Example of a complete HDR process starting with raspicam '''
|
||||
|
||||
#Get sequence from raspicam
|
||||
stack = pcb.get_exposure_stack()
|
||||
|
||||
#Process HDR with mertens fusion and post effects
|
||||
result = hdr.process(stack, 1, 1, 1, True)
|
||||
|
||||
#Save Result to File
|
||||
file = file.saveResultToFile(result, 'hdr/', 75)
|
||||
|
||||
|
||||
#Testfile
|
||||
hdr = numpyHDR.NumpyHDR()
|
||||
liste = ['test_hdr0.jpg','test_hdr1.jpg', 'test_hdr2.jpg']
|
||||
hdr.input_image = liste
|
||||
hdr.output_path = 'hdr/fused_merten17'
|
||||
hdr.compress_quality = 75
|
||||
hdr.sequence(1, 1, 1, True)
|
||||
|
436
numpyHDR.py
436
numpyHDR.py
@ -1,244 +1,218 @@
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
|
||||
#import matplotlib.pyplot as plt
|
||||
|
||||
class NumpyHDR:
|
||||
'''Numpy and PIL implementation of a Mertens Fusion alghoritm
|
||||
Usage: Instantiate then set attributes:
|
||||
input_image = List containing path strings including .jpg Extension
|
||||
output_path = String ot Output without jpg ending
|
||||
compress_quality = 0-100 Jpeg compression level defaults to 75
|
||||
'''Numpy and PIL implementation of a Mertens Fusion alghoritm
|
||||
Usage: Instantiate then set attributes:
|
||||
input_image = List containing path strings including .jpg Extension
|
||||
output_path = String ot Output without jpg ending
|
||||
compress_quality = 0-100 Jpeg compression level defaults to 75
|
||||
|
||||
Run function sequence() to start processing.
|
||||
Example:
|
||||
Run function sequence() to start processing.
|
||||
Example:
|
||||
|
||||
hdr = numpyHDR.NumpyHDR()
|
||||
hdr = numpyHDR.NumpyHDR()
|
||||
|
||||
hdr.input_image = photos/EV- stages/
|
||||
hdr.compress_quality = 50
|
||||
hdr.output_path = photos/result/
|
||||
hdr.sequence()
|
||||
hdr.input_image = photos/EV- stages/
|
||||
hdr.compress_quality = 50
|
||||
hdr.output_path = photos/result/
|
||||
hdr.sequence()
|
||||
returns: Nothing
|
||||
'''
|
||||
|
||||
def simple_clip(fused,gamma):
|
||||
# Apply gamma correction
|
||||
#fused = np.clip(fused, 0, 1)
|
||||
fused = np.power(fused, 1.0 / gamma)
|
||||
#hdr_8bit = np.clip(res_mertens * 255, 0, 255).astype('uint8')
|
||||
fused = (255.0 * fused).astype(np.uint8)
|
||||
#fused = Image.fromarray(fused)
|
||||
|
||||
return fused
|
||||
def convolve2d(image, kernel):
|
||||
"""Perform a 2D convolution on the given image with the given kernel.
|
||||
|
||||
Args:
|
||||
image: The input image to convolve.
|
||||
kernel: The kernel to convolve the image with.
|
||||
|
||||
Returns:
|
||||
The convolved image.
|
||||
"""
|
||||
# Get the dimensions of the image and kernel.
|
||||
image_height, image_width = image.shape[:2]
|
||||
kernel_height, kernel_width = kernel.shape[:2]
|
||||
|
||||
# Compute the amount of padding to add to the image.
|
||||
pad_height = kernel_height // 2
|
||||
pad_width = kernel_width // 2
|
||||
|
||||
# Pad the image with zeros.
|
||||
padded_image = np.zeros(
|
||||
(image_height + 2 * pad_height, image_width + 2 * pad_width),
|
||||
dtype=np.float32,
|
||||
)
|
||||
padded_image[pad_height:-pad_height, pad_width:-pad_width] = image
|
||||
|
||||
# Flip the kernel horizontally and vertically.
|
||||
flipped_kernel = np.flipud(np.fliplr(kernel))
|
||||
|
||||
# Convolve the padded image with the flipped kernel.
|
||||
convolved_image = np.zeros_like(image, dtype=np.float32)
|
||||
for row in range(image_height):
|
||||
for col in range(image_width):
|
||||
patch = padded_image[
|
||||
row : row + kernel_height, col : col + kernel_width
|
||||
]
|
||||
product = patch * flipped_kernel
|
||||
convolved_image[row, col] = product.sum()
|
||||
|
||||
return convolved_image
|
||||
|
||||
def mask(img, center=50, width=20, threshold=0.2):
|
||||
'''Mask with sigmoid smooth'''
|
||||
mask = 1 / (1 + np.exp((center - img) / width)) # Smooth gradient mask
|
||||
mask = np.where(img > threshold, mask, 1) # Apply threshold to the mask
|
||||
mask = img * mask
|
||||
#plot_histogram(mask, title="mask")
|
||||
return mask
|
||||
|
||||
def highlightsdrop(img, center=0.7, width=0.2, threshold=0.6, amount=0.08):
|
||||
'''Mask with sigmoid smooth targets bright sections'''
|
||||
mask = 1 / (1 + np.exp((center - img) / width)) # Smooth gradient mask
|
||||
mask = np.where(img > threshold, mask, 0) # Apply threshold to the mask
|
||||
mask = mask.reshape((img.shape))
|
||||
print(np.max(mask))
|
||||
img_adjusted = img - (mask * amount) # Adjust the image with a user-specified amount
|
||||
img_adjusted = np.clip(img_adjusted, 0, 1)
|
||||
|
||||
return img_adjusted
|
||||
|
||||
def shadowlift(img, center=0.2, width=0.1, threshold=0.2, amount= 0.05):
|
||||
'''Mask with sigmoid smooth targets bright sections'''
|
||||
mask = 1 / (1 + np.exp((center - img) / width)) # Smooth gradient mask
|
||||
mask = np.where(img < threshold, mask, 0) # Apply threshold to the mask
|
||||
mask = mask.reshape((img.shape))
|
||||
print(np.max(mask))
|
||||
img_adjusted = (mask * amount) + img # Adjust the image with a user-specified amount
|
||||
img_adjusted = np.clip(img_adjusted, 0, 1)
|
||||
|
||||
return img_adjusted
|
||||
|
||||
def mertens_fusion(stack, gamma=1, contrast_weight=1):
|
||||
"""Fuse multiple exposures into a single HDR image using the Mertens algorithm.
|
||||
|
||||
Args:
|
||||
image_paths: A list of paths to input images.
|
||||
gamma: The gamma correction value to apply to the input images.
|
||||
contrast_weight: The weight of the local contrast term in the weight map computation.
|
||||
|
||||
Returns:
|
||||
The fused HDR image.
|
||||
"""
|
||||
|
||||
images = []
|
||||
for array in stack:
|
||||
img = np.array(array).astype(np.float32) / 255.0
|
||||
img = np.power(img, gamma)
|
||||
images.append(img)
|
||||
|
||||
# Compute the weight maps for each input image based on the local contrast.
|
||||
weight_maps = []
|
||||
|
||||
for img in images:
|
||||
gray = np.dot(img, [0.2989, 0.5870, 0.1140])
|
||||
kernel = np.array([[-1, -1, -1], [-1, 7, -1], [-1, -1, -1]])
|
||||
laplacian = np.abs(convolve2d(gray, kernel))
|
||||
weight = np.power(laplacian, contrast_weight)
|
||||
weight_maps.append(weight)
|
||||
|
||||
# Normalize the weight maps.
|
||||
total_weight = sum(weight_maps)
|
||||
weight_maps = [w / total_weight for w in weight_maps]
|
||||
|
||||
# Compute the fused HDR image by computing a weighted sum of the input images.
|
||||
fused = np.zeros(images[0].shape, dtype=np.float32)
|
||||
for i, img in enumerate(images):
|
||||
fused += weight_maps[i][:, :, np.newaxis] * img
|
||||
#print(fused)
|
||||
|
||||
return fused
|
||||
|
||||
def compress_dynamic_range(image):
|
||||
'''Compress dynamic range based on percentile'''
|
||||
# Find the 1st and 99th percentiles of the image
|
||||
p1, p99 = np.percentile(image, (0, 99))
|
||||
|
||||
# Calculate the range of the image
|
||||
img_range = p99 - p1
|
||||
|
||||
# Calculate the compression factor required to fit the image into 8-bit range
|
||||
c = 1 / img_range
|
||||
|
||||
# Subtract the 1st percentile from the image and clip it to the [0, 1] range
|
||||
new_image = np.clip((image - p1) * c, 0, 1)
|
||||
|
||||
return new_image
|
||||
|
||||
def compress_dynamic_range_histo(image, new_min=0.01, new_max=0.99):
|
||||
"""Compress the dynamic range of an image using histogram stretching.
|
||||
|
||||
Args:
|
||||
image: A numpy array representing an image.
|
||||
new_min: The minimum value of the new range.
|
||||
new_max: The maximum value of the new range.
|
||||
Returns:
|
||||
The compressed image.
|
||||
"""
|
||||
# Calculate the histogram of the image.
|
||||
hist, bins = np.histogram(image.ravel(), bins=256, range=(0, 1))
|
||||
|
||||
# Calculate the cumulative distribution function (CDF) of the histogram.
|
||||
cdf = hist.cumsum()
|
||||
cdf = (cdf - cdf.min()) / (cdf.max() - cdf.min()) # normalize to [0, 1]
|
||||
|
||||
# Interpolate the CDF to get the new pixel values.
|
||||
new_pixels = np.interp(image.ravel(), bins[:-1], cdf * (new_max - new_min) + new_min)
|
||||
|
||||
# Reshape the new pixel values to the shape of the original image.
|
||||
new_image = new_pixels.reshape((image.shape[0], image.shape[1], image.shape[2]))
|
||||
|
||||
return new_image
|
||||
|
||||
def process(stack, gain: float = 1, weight: float = 1, gamma: float = 1, post: bool = True):
|
||||
'''Processes the stack that contains a list of arrays form the camera into a PIL compatible clipped output array
|
||||
Args:
|
||||
stack : input list with arrays
|
||||
gain : low value low contrast, high value high contrast and brightness
|
||||
weight: How much the extracted portions of each image gets allpied to to the result "HDR effect intensity"
|
||||
gamma: Post fusion adjustment of the gamma.
|
||||
post: Enable or disable effects applied after the fusion True or False, default True
|
||||
shadowlift = slightly lifts the shadows
|
||||
Args:
|
||||
center: position of the filter dropoff
|
||||
width: range of the gradient, softness
|
||||
threshold: sets the threshhold form 0 to 1 0.1= lowest blacks....
|
||||
amount: How much the shadows should be lifted. Values under 0.1 seem to be good.
|
||||
returns:
|
||||
Hdr image with lifted blacks clipped to 0,1 range
|
||||
|
||||
compress dynamic range:
|
||||
Tries to fit the image better into the available range. Less loggy image.
|
||||
Returns:
|
||||
HDR Image as PIL compatible array.
|
||||
|
||||
returns: Nothing
|
||||
'''
|
||||
|
||||
def __init__(self):
|
||||
self.input_image: list = []
|
||||
self.output_path: str = '/'
|
||||
self.compress_quality: int = 75
|
||||
hdr_image = mertens_fusion(stack ,gain, weight)
|
||||
if post == True:
|
||||
#hdr_image = self.highlightsdrop(hdr_image)
|
||||
hdr_image = shadowlift(hdr_image)
|
||||
hdr_image = compress_dynamic_range(hdr_image)
|
||||
#hdr_image = self.compress_dynamic_range_histo(hdr_image)
|
||||
|
||||
hdr_image = simple_clip(hdr_image,gamma)
|
||||
return hdr_image
|
||||
|
||||
def plot_histogram(self, image, title="Histogram", bins=256):
|
||||
"""Plot the histogram of an image.
|
||||
|
||||
Args:
|
||||
image: A numpy array representing an image.
|
||||
title: The title of the plot.
|
||||
bins: The number of bins in the histogram.
|
||||
"""
|
||||
fig, ax = plt.subplots()
|
||||
ax.hist(image.ravel(), bins=bins, color='gray', alpha=0.7)
|
||||
ax.set_title(title)
|
||||
ax.set_xlabel('Pixel value')
|
||||
ax.set_ylabel('Frequency')
|
||||
plt.show()
|
||||
### Experimental functions above this line. chatGPT sketches
|
||||
|
||||
def simple_clip(self, fused,gamma):
|
||||
# Apply gamma correction
|
||||
#fused = np.clip(fused, 0, 1)
|
||||
fused = np.power(fused, 1.0 / gamma)
|
||||
#hdr_8bit = np.clip(res_mertens * 255, 0, 255).astype('uint8')
|
||||
fused = (255.0 * fused).astype(np.uint8)
|
||||
#fused = Image.fromarray(fused)
|
||||
|
||||
return fused
|
||||
|
||||
def convolve2d(self, image, kernel):
|
||||
"""Perform a 2D convolution on the given image with the given kernel.
|
||||
|
||||
Args:
|
||||
image: The input image to convolve.
|
||||
kernel: The kernel to convolve the image with.
|
||||
|
||||
Returns:
|
||||
The convolved image.
|
||||
"""
|
||||
# Get the dimensions of the image and kernel.
|
||||
image_height, image_width = image.shape[:2]
|
||||
kernel_height, kernel_width = kernel.shape[:2]
|
||||
|
||||
# Compute the amount of padding to add to the image.
|
||||
pad_height = kernel_height // 2
|
||||
pad_width = kernel_width // 2
|
||||
|
||||
# Pad the image with zeros.
|
||||
padded_image = np.zeros(
|
||||
(image_height + 2 * pad_height, image_width + 2 * pad_width),
|
||||
dtype=np.float32,
|
||||
)
|
||||
padded_image[pad_height:-pad_height, pad_width:-pad_width] = image
|
||||
|
||||
# Flip the kernel horizontally and vertically.
|
||||
flipped_kernel = np.flipud(np.fliplr(kernel))
|
||||
|
||||
# Convolve the padded image with the flipped kernel.
|
||||
convolved_image = np.zeros_like(image, dtype=np.float32)
|
||||
for row in range(image_height):
|
||||
for col in range(image_width):
|
||||
patch = padded_image[
|
||||
row : row + kernel_height, col : col + kernel_width
|
||||
]
|
||||
product = patch * flipped_kernel
|
||||
convolved_image[row, col] = product.sum()
|
||||
|
||||
return convolved_image
|
||||
|
||||
def mask(self, img, center=50, width=20, threshold=0.2):
|
||||
'''Mask with sigmoid smooth'''
|
||||
mask = 1 / (1 + np.exp((center - img) / width)) # Smooth gradient mask
|
||||
mask = np.where(img > threshold, mask, 1) # Apply threshold to the mask
|
||||
mask = img * mask
|
||||
#plot_histogram(mask, title="mask")
|
||||
return mask
|
||||
|
||||
def highlightsdrop(self, img, center=0.7, width=0.2, threshold=0.6, amount=0.08):
|
||||
'''Mask with sigmoid smooth targets bright sections'''
|
||||
mask = 1 / (1 + np.exp((center - img) / width)) # Smooth gradient mask
|
||||
mask = np.where(img > threshold, mask, 0) # Apply threshold to the mask
|
||||
mask = mask.reshape((img.shape))
|
||||
print(np.max(mask))
|
||||
img_adjusted = img - (mask * amount) # Adjust the image with a user-specified amount
|
||||
img_adjusted = np.clip(img_adjusted, 0, 1)
|
||||
|
||||
return img_adjusted
|
||||
|
||||
def shadowlift(self, img, center=0.2, width=0.1, threshold=0.2, amount= 0.05):
|
||||
'''Mask with sigmoid smooth targets bright sections'''
|
||||
mask = 1 / (1 + np.exp((center - img) / width)) # Smooth gradient mask
|
||||
mask = np.where(img < threshold, mask, 0) # Apply threshold to the mask
|
||||
mask = mask.reshape((img.shape))
|
||||
print(np.max(mask))
|
||||
img_adjusted = (mask * amount) + img # Adjust the image with a user-specified amount
|
||||
img_adjusted = np.clip(img_adjusted, 0, 1)
|
||||
|
||||
return img_adjusted
|
||||
|
||||
def mertens_fusion(self, image_paths, gamma=2.2, contrast_weight=0.2):
|
||||
"""Fuse multiple exposures into a single HDR image using the Mertens algorithm.
|
||||
|
||||
Args:
|
||||
image_paths: A list of paths to input images.
|
||||
gamma: The gamma correction value to apply to the input images.
|
||||
contrast_weight: The weight of the local contrast term in the weight map computation.
|
||||
|
||||
Returns:
|
||||
The fused HDR image.
|
||||
"""
|
||||
# Load the input images and convert them to floating-point format.
|
||||
images = []
|
||||
for path in image_paths:
|
||||
img = Image.open(path)
|
||||
img = img.resize((1280, 720))
|
||||
img = np.array(img).astype(np.float32) / 255.0
|
||||
img = np.power(img, gamma)
|
||||
|
||||
images.append(img)
|
||||
|
||||
# Compute the weight maps for each input image based on the local contrast.
|
||||
weight_maps = []
|
||||
|
||||
for img in images:
|
||||
gray = np.dot(img, [0.2989, 0.5870, 0.1140])
|
||||
kernel = np.array([[-1, -1, -1], [-1, 7, -1], [-1, -1, -1]])
|
||||
laplacian = np.abs(self.convolve2d(gray, kernel))
|
||||
weight = np.power(laplacian, contrast_weight)
|
||||
weight_maps.append(weight)
|
||||
|
||||
# Normalize the weight maps.
|
||||
total_weight = sum(weight_maps)
|
||||
weight_maps = [w / total_weight for w in weight_maps]
|
||||
|
||||
# Compute the fused HDR image by computing a weighted sum of the input images.
|
||||
fused = np.zeros(images[0].shape, dtype=np.float32)
|
||||
for i, img in enumerate(images):
|
||||
fused += weight_maps[i][:, :, np.newaxis] * img
|
||||
#print(fused)
|
||||
|
||||
return fused
|
||||
|
||||
def compress_dynamic_range(self, image):
|
||||
# Find the 1st and 99th percentiles of the image
|
||||
p1, p99 = np.percentile(image, (0, 99))
|
||||
|
||||
# Calculate the range of the image
|
||||
img_range = p99 - p1
|
||||
|
||||
# Calculate the compression factor required to fit the image into 8-bit range
|
||||
c = 1 / img_range
|
||||
|
||||
# Subtract the 1st percentile from the image and clip it to the [0, 1] range
|
||||
new_image = np.clip((image - p1) * c, 0, 1)
|
||||
|
||||
return new_image
|
||||
|
||||
def compress_dynamic_range_histo(self, image, new_min=0.01, new_max=0.99):
|
||||
"""Compress the dynamic range of an image using histogram stretching.
|
||||
|
||||
Args:
|
||||
image: A numpy array representing an image.
|
||||
new_min: The minimum value of the new range.
|
||||
new_max: The maximum value of the new range.
|
||||
Returns:
|
||||
The compressed image.
|
||||
"""
|
||||
# Calculate the histogram of the image.
|
||||
hist, bins = np.histogram(image.ravel(), bins=256, range=(0, 1))
|
||||
|
||||
# Calculate the cumulative distribution function (CDF) of the histogram.
|
||||
cdf = hist.cumsum()
|
||||
cdf = (cdf - cdf.min()) / (cdf.max() - cdf.min()) # normalize to [0, 1]
|
||||
|
||||
# Interpolate the CDF to get the new pixel values.
|
||||
new_pixels = np.interp(image.ravel(), bins[:-1], cdf * (new_max - new_min) + new_min)
|
||||
|
||||
# Reshape the new pixel values to the shape of the original image.
|
||||
new_image = new_pixels.reshape((image.shape[0], image.shape[1], image.shape[2]))
|
||||
|
||||
return new_image
|
||||
|
||||
def open_image(filename):
|
||||
# Open the image file in binary mode
|
||||
with open(filename, 'rb') as f:
|
||||
# Read the binary data from the file
|
||||
binary_data = f.read()
|
||||
|
||||
# Convert the binary data to a 1D numpy array of uint8 type
|
||||
image_array = np.frombuffer(binary_data, dtype=np.uint8)
|
||||
|
||||
# Reshape the 1D array into a 2D array with the correct image shape
|
||||
# (Assuming a 3-channel RGB image with shape (height, width))
|
||||
height = int.from_bytes(binary_data[16:20], byteorder='big')
|
||||
width = int.from_bytes(binary_data[20:24], byteorder='big')
|
||||
image_array = image_array[24:].reshape((height, width, 3))
|
||||
|
||||
return image_array
|
||||
|
||||
def sequence(self, gain: float = 0.8, weight: float = 0.5, gamma: float = 1, post: bool = True):
|
||||
'''gain setting : the higher the darker, good range from 0.4- 1.0'''
|
||||
print(self.input_image)
|
||||
hdr_image = self.mertens_fusion(self.input_image ,gain, weight)
|
||||
|
||||
if post == True:
|
||||
|
||||
#hdr_image = self.highlightsdrop(hdr_image)
|
||||
hdr_image = self.shadowlift(hdr_image)
|
||||
hdr_image = self.compress_dynamic_range(hdr_image)
|
||||
#hdr_image = self.compress_dynamic_range_histo(hdr_image)
|
||||
|
||||
hdr_image = self.simple_clip(hdr_image,gamma)
|
||||
image = Image.fromarray(hdr_image)
|
||||
image.save(f"{self.output_path}_hdr.jpg", quality=self.compress_quality)
|
||||
|
||||
|
||||
|
@ -13,60 +13,66 @@ picam2.set_controls({"AwbEnable": 1})
|
||||
picam2.set_controls({"AeEnable": 1})
|
||||
picam2.set_controls({"AfMode": controls.AfModeEnum.Manual })
|
||||
picam2.set_controls({"LensPosition": 0.0 })
|
||||
#picam2.set_controls({"AnalogueGain": 1.0})
|
||||
picam2.start()
|
||||
time.sleep(1)
|
||||
|
||||
print(picam2.capture_metadata())
|
||||
start = picam2.capture_metadata()
|
||||
exposure_start = start["ExposureTime"]
|
||||
gain_start = start["AnalogueGain"]
|
||||
def get_exposure_stack(factor: int = 2):
|
||||
'''Returns a list with arrays that contain different exposures controlled by the factor.'''
|
||||
'''The Autoamtically set exposure of the first frame is saved and multiplied or divided ba the factor to get the above or under epxosures.'''
|
||||
|
||||
picam2.set_controls({"AeEnable": 0})
|
||||
confirmed = picam2.capture_metadata()["AeLocked"]
|
||||
while confirmed != True:
|
||||
confimed = picam2.capture_metadata()["AeLocked"]
|
||||
time.sleep(.1)
|
||||
picam2.start()
|
||||
time.sleep(1)
|
||||
|
||||
picam2.set_controls({"AnalogueGain": gain_start})
|
||||
confirmed = picam2.capture_metadata()["AnalogueGain"]
|
||||
while confirmed != gain_start in range(gain_start -0.1, gain_start +0.1):
|
||||
print(picam2.capture_metadata())
|
||||
start = picam2.capture_metadata()
|
||||
exposure_start = start["ExposureTime"]
|
||||
gain_start = start["AnalogueGain"]
|
||||
|
||||
picam2.set_controls({"AeEnable": 0})
|
||||
confirmed = picam2.capture_metadata()["AeLocked"]
|
||||
while confirmed != True:
|
||||
confimed = picam2.capture_metadata()["AeLocked"]
|
||||
time.sleep(.1)
|
||||
|
||||
picam2.set_controls({"AnalogueGain": gain_start})
|
||||
confirmed = picam2.capture_metadata()["AnalogueGain"]
|
||||
while confirmed != gain_start in range(gain_start -0.1, gain_start +0.1):
|
||||
confimed = picam2.capture_metadata()["AnalogueGain"]
|
||||
time.sleep(.1)
|
||||
|
||||
ev1 = picam2.capture_array()
|
||||
#print("Picture one is done")
|
||||
ev1 = picam2.capture_array()
|
||||
#print("Picture one is done")
|
||||
|
||||
ev_low = int(exposure_start / 2)
|
||||
picam2.set_controls({"ExposureTime": ev_low})
|
||||
confirmed = picam2.capture_metadata()["ExposureTime"]
|
||||
while confirmed not in range(ev_low -100, ev_low + 100 ):
|
||||
ev_low = int(exposure_start / factor)
|
||||
picam2.set_controls({"ExposureTime": ev_low})
|
||||
confirmed = picam2.capture_metadata()["ExposureTime"]
|
||||
while confirmed not in range(ev_low -100, ev_low + 100 ):
|
||||
confirmed = picam2.capture_metadata()["ExposureTime"]
|
||||
time.sleep(.01)
|
||||
|
||||
#print("2",confirmed)
|
||||
ev2 = picam2.capture_array()
|
||||
#print("Picture 2 is captured to array")
|
||||
#print("2",confirmed)
|
||||
ev2 = picam2.capture_array()
|
||||
#print("Picture 2 is captured to array")
|
||||
|
||||
ev_high = int(exposure_start * 2)
|
||||
picam2.set_controls({"ExposureTime": ev_high})
|
||||
confirmed = picam2.capture_metadata()["ExposureTime"]
|
||||
while confirmed not in range(ev_high -100, ev_high + 100 ):
|
||||
ev_high = int(exposure_start * factor)
|
||||
picam2.set_controls({"ExposureTime": ev_high})
|
||||
confirmed = picam2.capture_metadata()["ExposureTime"]
|
||||
while confirmed not in range(ev_high -100, ev_high + 100 ):
|
||||
confirmed = picam2.capture_metadata()["ExposureTime"]
|
||||
time.sleep(.01)
|
||||
|
||||
#print("3",confirmed)
|
||||
ev3 = picam2.capture_array()
|
||||
#print("Picture 3 is captured")
|
||||
print("Saving..")
|
||||
#print("3",confirmed)
|
||||
ev3 = picam2.capture_array()
|
||||
#print("Picture 3 is captured")
|
||||
|
||||
picam2.stop()
|
||||
stack = [ev1,ev2,ev3]
|
||||
|
||||
return stack
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
image = Image.fromarray(ev1)
|
||||
image.save(f"test_hdr0.jpg", quality=50)
|
||||
|
||||
image = Image.fromarray(ev2)
|
||||
image.save(f"test_hdr1.jpg", quality=50)
|
||||
|
||||
image = Image.fromarray(ev3)
|
||||
image.save(f"test_hdr2.jpg", quality=50)
|
||||
|
||||
picam2.stop()
|
||||
|
Loading…
Reference in New Issue
Block a user