7a92698dfc
(Doubles processing time, can be switched off)
245 lines
8.9 KiB
Python
245 lines
8.9 KiB
Python
import numpy as np
|
|
|
|
'''Numpy and PIL implementation of a Mertens Fusion alghoritm
|
|
Usage: Instantiate then set attributes:
|
|
input_image = List containing path strings including .jpg Extension
|
|
output_path = String ot Output without jpg ending
|
|
compress_quality = 0-100 Jpeg compression level defaults to 75
|
|
|
|
Run function sequence() to start processing.
|
|
Example:
|
|
|
|
hdr = numpyHDR.NumpyHDR()
|
|
|
|
hdr.input_image = photos/EV- stages/
|
|
hdr.compress_quality = 50
|
|
hdr.output_path = photos/result/
|
|
hdr.sequence()
|
|
returns: Nothing
|
|
'''
|
|
|
|
def simple_clip(fused,gamma):
|
|
# Apply gamma correction
|
|
#fused = np.clip(fused, 0, 1)
|
|
fused = np.power(fused, 1.0 / gamma)
|
|
#hdr_8bit = np.clip(res_mertens * 255, 0, 255).astype('uint8')
|
|
fused = (255.0 * fused).astype(np.uint8)
|
|
#fused = Image.fromarray(fused)
|
|
|
|
return fused
|
|
def convolve2d(image, kernel):
|
|
# Get the dimensions of the input image and kernel
|
|
image_height, image_width = image.shape
|
|
kernel_height, kernel_width = kernel.shape
|
|
|
|
# Compute the padding needed to handle boundary effects
|
|
pad_height = (kernel_height - 1) // 2
|
|
pad_width = (kernel_width - 1) // 2
|
|
padded_image = np.pad(image, ((pad_height, pad_height), (pad_width, pad_width)), mode='constant')
|
|
|
|
# Define generators for row and column indices
|
|
row_indices = range(image_height)
|
|
col_indices = range(image_width)
|
|
|
|
# Define a generator expression to generate patches centered at each pixel
|
|
patches = (
|
|
padded_image[
|
|
row : row + kernel_height, col : col + kernel_width
|
|
]
|
|
for row in row_indices
|
|
for col in col_indices
|
|
)
|
|
|
|
# Define a generator expression to generate element-wise products of patches and flipped kernels
|
|
products = (
|
|
patch * np.flip(kernel, axis=(0, 1))
|
|
for patch in patches
|
|
)
|
|
|
|
# Define a generator expression to generate convolved values
|
|
convolved_values = (
|
|
product.sum()
|
|
for product in products
|
|
)
|
|
|
|
# Reshape the convolved values into an output image
|
|
convolved_image = np.array(list(convolved_values)).reshape((image_height, image_width))
|
|
|
|
return convolved_image
|
|
|
|
def mask(img, center=50, width=20, threshold=0.2):
|
|
'''Mask with sigmoid smooth'''
|
|
mask = 1 / (1 + np.exp((center - img) / width)) # Smooth gradient mask
|
|
mask = np.where(img > threshold, mask, 1) # Apply threshold to the mask
|
|
mask = img * mask
|
|
#plot_histogram(mask, title="mask")
|
|
return mask
|
|
|
|
def highlightsdrop(img, center=0.7, width=0.2, threshold=0.6, amount=0.08):
|
|
'''Mask with sigmoid smooth targets bright sections'''
|
|
mask = 1 / (1 + np.exp((center - img) / width)) # Smooth gradient mask
|
|
mask = np.where(img > threshold, mask, 0) # Apply threshold to the mask
|
|
mask = mask.reshape((img.shape))
|
|
print(np.max(mask))
|
|
img_adjusted = img - (mask * amount) # Adjust the image with a user-specified amount
|
|
img_adjusted = np.clip(img_adjusted, 0, 1)
|
|
|
|
return img_adjusted
|
|
|
|
def shadowlift(img, center=0.2, width=0.1, threshold=0.2, amount= 0.05):
|
|
'''Mask with sigmoid smooth targets bright sections'''
|
|
mask = 1 / (1 + np.exp((center - img) / width)) # Smooth gradient mask
|
|
mask = np.where(img < threshold, mask, 0) # Apply threshold to the mask
|
|
mask = mask.reshape((img.shape))
|
|
print(np.max(mask))
|
|
img_adjusted = (mask * amount) + img # Adjust the image with a user-specified amount
|
|
img_adjusted = np.clip(img_adjusted, 0, 1)
|
|
|
|
return img_adjusted
|
|
def blur(image, amount=1):
|
|
# Define a kernel for sharpening
|
|
kernel = np.array([[0, -1, 0],
|
|
[-1, 4, -1],
|
|
[0, -1, 0]])
|
|
|
|
# Apply the kernel to each channel of the image using convolution
|
|
blurred = convolve2d(image, kernel)
|
|
|
|
# Add the original image to the sharpened image with a weight of the sharpening amount
|
|
sharpened = image + amount * (image - blurred)
|
|
|
|
sharpened = np.clip(sharpened, 0, 1)
|
|
|
|
# Crop the output image to match the input size
|
|
#sharpened = sharpened.reshape(image.shape)
|
|
|
|
return sharpened
|
|
|
|
|
|
|
|
def mertens_fusion(stack, gamma:float =1, contrast_weight:float =1 ,blurred: bool = False) -> bytearray:
|
|
"""Fuse multiple exposures into a single HDR image using the Mertens algorithm.
|
|
|
|
Args:
|
|
image_paths: A list of paths to input images.
|
|
gamma: The gamma correction value to apply to the input images.
|
|
contrast_weight: The weight of the local contrast term in the weight map computation.
|
|
blurred: Helps making transitions for the weights smoother but increases provessing time x2
|
|
|
|
Returns:
|
|
The fused HDR image.
|
|
"""
|
|
|
|
images = []
|
|
for array in stack:
|
|
#Incoming arrays in 255 er range
|
|
img = np.array(array).astype(np.float32) / 255.0
|
|
img = np.power(img, gamma)
|
|
images.append(img)
|
|
|
|
# Compute the weight maps for each input image based on the local contrast.
|
|
weight_maps = []
|
|
|
|
for img in images:
|
|
threshold_h = .99
|
|
threshold_l = .1
|
|
# Apply thresholding to filter out overexposed portions of the image
|
|
img = np.where(img > threshold_h, 0.99, img)
|
|
gray = np.dot(img, [0.2989, 0.5870, 0.1140])
|
|
if blurred:
|
|
gray = blur(gray, 1)
|
|
#kernel = np.array([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]])
|
|
kernel = np.array([[1, 2, 1], [2, -11, 2], [1, 2, 1]])
|
|
laplacian = np.abs(convolve2d(gray, kernel))
|
|
weight = np.power(laplacian, contrast_weight)
|
|
weight_maps.append(weight)
|
|
|
|
# Normalize the weight maps.
|
|
total_weight = sum(weight_maps)
|
|
weight_maps = [w / total_weight for w in weight_maps]
|
|
|
|
# Compute the fused HDR image by computing a weighted sum of the input images.
|
|
fused = np.zeros(images[0].shape, dtype=np.float32)
|
|
for i, img in enumerate(images):
|
|
fused += weight_maps[i][:, :, np.newaxis] * img
|
|
|
|
return fused
|
|
|
|
def compress_dynamic_range(image):
|
|
'''Compress dynamic range based on percentile'''
|
|
# Find the 1st and 99th percentiles of the image
|
|
p1, p99 = np.percentile(image, (0, 99))
|
|
|
|
# Calculate the range of the image
|
|
img_range = p99 - p1
|
|
|
|
# Calculate the compression factor required to fit the image into 8-bit range
|
|
c = 1 / img_range
|
|
|
|
# Subtract the 1st percentile from the image and clip it to the [0, 1] range
|
|
new_image = np.clip((image - p1) * c, 0, 1)
|
|
|
|
return new_image
|
|
|
|
def compress_dynamic_range_histo(image, new_min=0.01, new_max=0.99):
|
|
"""Compress the dynamic range of an image using histogram stretching.
|
|
|
|
Args:
|
|
image: A numpy array representing an image.
|
|
new_min: The minimum value of the new range.
|
|
new_max: The maximum value of the new range.
|
|
Returns:
|
|
The compressed image.
|
|
"""
|
|
# Calculate the histogram of the image.
|
|
hist, bins = np.histogram(image.ravel(), bins=256, range=(0, 1))
|
|
|
|
# Calculate the cumulative distribution function (CDF) of the histogram.
|
|
cdf = hist.cumsum()
|
|
cdf = (cdf - cdf.min()) / (cdf.max() - cdf.min()) # normalize to [0, 1]
|
|
|
|
# Interpolate the CDF to get the new pixel values.
|
|
new_pixels = np.interp(image.ravel(), bins[:-1], cdf * (new_max - new_min) + new_min)
|
|
|
|
# Reshape the new pixel values to the shape of the original image.
|
|
new_image = new_pixels.reshape((image.shape[0], image.shape[1], image.shape[2]))
|
|
|
|
return new_image
|
|
|
|
def process(stack, gain: float = 1, weight: float = 1, gamma: float = 1, post: bool = True, blurred: bool = True):
|
|
'''Processes the stack that contains a list of arrays form the camera into a PIL compatible clipped output array
|
|
Args:
|
|
stack : input list with arrays
|
|
gain : low value low contrast, high value high contrast and brightness
|
|
weight: How much the extracted portions of each image gets allpied to to the result "HDR effect intensity"
|
|
gamma: Post fusion adjustment of the gamma.
|
|
post: Enable or disable effects applied after the fusion True or False, default True
|
|
shadowlift = slightly lifts the shadows
|
|
Args:
|
|
center: position of the filter dropoff
|
|
width: range of the gradient, softness
|
|
threshold: sets the threshhold form 0 to 1 0.1= lowest blacks....
|
|
amount: How much the shadows should be lifted. Values under 0.1 seem to be good.
|
|
returns:
|
|
Hdr image with lifted blacks clipped to 0,1 range
|
|
|
|
compress dynamic range:
|
|
Tries to fit the image better into the available range. Less loggy image.
|
|
Returns:
|
|
HDR Image as PIL compatible array.
|
|
|
|
'''
|
|
|
|
hdr_image = mertens_fusion(stack ,gain, weight, blurred)
|
|
if post == True:
|
|
#hdr_image = self.highlightsdrop(hdr_image)
|
|
hdr_image = shadowlift(hdr_image)
|
|
hdr_image = compress_dynamic_range(hdr_image)
|
|
#hdr_image = self.compress_dynamic_range_histo(hdr_image)
|
|
|
|
hdr_image = simple_clip(hdr_image,gamma)
|
|
return hdr_image
|
|
|
|
|
|
|