Testing
This commit is contained in:
parent
1b541bdc75
commit
5991e3a98c
2
main.py
2
main.py
@ -4,6 +4,6 @@ import numpyHDR
|
|||||||
hdr = numpyHDR.NumpyHDR()
|
hdr = numpyHDR.NumpyHDR()
|
||||||
liste = ['hdr/webcam20_3_2023_ev0.jpg','hdr/webcam20_3_2023_ev1.jpg','hdr/webcam20_3_2023_ev-2.jpg']
|
liste = ['hdr/webcam20_3_2023_ev0.jpg','hdr/webcam20_3_2023_ev1.jpg','hdr/webcam20_3_2023_ev-2.jpg']
|
||||||
hdr.input_image = liste
|
hdr.input_image = liste
|
||||||
hdr.output_path = 'hdr/fused_merten7'
|
hdr.output_path = 'hdr/fused_merten12'
|
||||||
hdr.compress_quality = 75
|
hdr.compress_quality = 75
|
||||||
hdr.sequence(0.8, 0.1)
|
hdr.sequence(0.8, 0.1)
|
||||||
|
@ -1,5 +1,7 @@
|
|||||||
from PIL import Image
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
from PIL import Image
|
||||||
|
|
||||||
|
|
||||||
#import matplotlib.pyplot as plt
|
#import matplotlib.pyplot as plt
|
||||||
|
|
||||||
class NumpyHDR:
|
class NumpyHDR:
|
||||||
@ -131,10 +133,8 @@ class NumpyHDR:
|
|||||||
# Load the input images and convert them to floating-point format.
|
# Load the input images and convert them to floating-point format.
|
||||||
images = []
|
images = []
|
||||||
for path in image_paths:
|
for path in image_paths:
|
||||||
#print(path)
|
img = Image.open(path)
|
||||||
img = Image.open(path).convert('RGB')
|
|
||||||
img = img.resize((1280, 720))
|
img = img.resize((1280, 720))
|
||||||
img = np.array(img).astype(np.float32) / 255.0
|
|
||||||
img = np.power(img, gamma)
|
img = np.power(img, gamma)
|
||||||
images.append(img)
|
images.append(img)
|
||||||
|
|
||||||
@ -143,7 +143,6 @@ class NumpyHDR:
|
|||||||
|
|
||||||
for img in images:
|
for img in images:
|
||||||
gray = np.dot(img, [0.2989, 0.5870, 0.1140])
|
gray = np.dot(img, [0.2989, 0.5870, 0.1140])
|
||||||
#kernel = np.array([[-1, 1, -1], [1, 7, 1], [-1, 1, -1]])
|
|
||||||
kernel = np.array([[-1, -1, -1], [-1, 7, -1], [-1, -1, -1]])
|
kernel = np.array([[-1, -1, -1], [-1, 7, -1], [-1, -1, -1]])
|
||||||
laplacian = np.abs(self.convolve2d(gray, kernel))
|
laplacian = np.abs(self.convolve2d(gray, kernel))
|
||||||
weight = np.power(laplacian, contrast_weight)
|
weight = np.power(laplacian, contrast_weight)
|
||||||
@ -200,6 +199,22 @@ class NumpyHDR:
|
|||||||
return new_image
|
return new_image
|
||||||
|
|
||||||
return fused
|
return fused
|
||||||
|
def open_image(filename):
|
||||||
|
# Open the image file in binary mode
|
||||||
|
with open(filename, 'rb') as f:
|
||||||
|
# Read the binary data from the file
|
||||||
|
binary_data = f.read()
|
||||||
|
|
||||||
|
# Convert the binary data to a 1D numpy array of uint8 type
|
||||||
|
image_array = np.frombuffer(binary_data, dtype=np.uint8)
|
||||||
|
|
||||||
|
# Reshape the 1D array into a 2D array with the correct image shape
|
||||||
|
# (Assuming a 3-channel RGB image with shape (height, width))
|
||||||
|
height = int.from_bytes(binary_data[16:20], byteorder='big')
|
||||||
|
width = int.from_bytes(binary_data[20:24], byteorder='big')
|
||||||
|
image_array = image_array[24:].reshape((height, width, 3))
|
||||||
|
|
||||||
|
return image_array
|
||||||
|
|
||||||
def sequence(self, gain, weight):
|
def sequence(self, gain, weight):
|
||||||
print(self.input_image)
|
print(self.input_image)
|
Loading…
Reference in New Issue
Block a user