class NumpyUtility: def __init__(self): '''Utilitys made with chatGPT for experimentation, few are working''' def compress_dynamic_range(image): # Find the 1st and 99th percentiles of the image p1, p99 = np.percentile(image, (1, 99)) # Calculate the range of the image img_range = p99 - p1 # Calculate the compression factor required to fit the image into 8-bit range c = 1 / img_range # Subtract the 1st percentile from the image and clip it to the [0, 1] range new_image = np.clip((image - p1) * c, 0, 1) # Convert the image to uint8 format new_image = new_image.astype(np.uint8) return new_image def adjust_luminance(image, mask, amount): # Convert the image to LAB color space rgb_image = image.astype(np.float32) / 255.0 xyz_image = np.dot(rgb_image, np.array([[0.412453, 0.357580, 0.180423], [0.212671, 0.715160, 0.072169], [0.019334, 0.119193, 0.950227]])) xyz_image = np.clip(xyz_image, 0, 1) lab_image = np.zeros_like(xyz_image) lab_image[..., 0] = 116.0 * np.power(xyz_image[..., 1], 1 / 3.0) - 16.0 lab_image[..., 1] = 500.0 * (np.power(xyz_image[..., 0], 1 / 3.0) - np.power(xyz_image[..., 1], 1 / 3.0)) lab_image[..., 2] = 200.0 * (np.power(xyz_image[..., 1], 1 / 3.0) - np.power(xyz_image[..., 2], 1 / 3.0)) # Apply the luminance adjustment to the masked area lab_image[..., 0][mask == 1] = np.clip(lab_image[..., 0][mask == 1] * (1 + amount), 0, 100) # Convert the image back to RGB color space xyz_image[..., 1] = np.power((lab_image[..., 0] + 16.0) / 116.0, 3) xyz_image[..., 0] = np.power((lab_image[..., 0] + 16.0) / 116.0 + lab_image[..., 1] / 500.0, 3) xyz_image[..., 2] = np.power((lab_image[..., 0] + 16.0) / 116.0 - lab_image[..., 2] / 200.0, 3) rgb_image = np.dot(xyz_image, np.array([[3.240479, -1.537150, -0.498535], [-0.969256, 1.875992, 0.041556], [0.055648, -0.204043, 1.057311]])) # Convert the image back to the range [0, 255] rgb_image = np.clip(rgb_image, 0, 1) * 255.0 rgb_image = rgb_image.astype(np.uint8) return rgb_image def gaussian_filter(mask, sigma): """ Apply Gaussian filtering to a binary mask. Parameters: mask (numpy.ndarray): Binary mask to apply filtering on. sigma (float): Standard deviation of the Gaussian kernel. Returns: numpy.ndarray: Binary mask after Gaussian filtering. """ # Create a Gaussian kernel with the given sigma ksize = int(2 * np.ceil(2 * sigma) + 1) kernel = np.zeros((ksize, ksize)) for i in range(ksize): for j in range(ksize): kernel[i, j] = np.exp(-((i - ksize // 2) ** 2 + (j - ksize // 2) ** 2) / (2 * sigma ** 2)) kernel /= np.sum(kernel) # Apply convolution with the kernel filtered = np.zeros_like(mask, dtype='float32') for i in range(mask.shape[0]): for j in range(mask.shape[1]): roi = mask[max(i - ksize // 2, 0):min(i + ksize // 2 + 1, mask.shape[0]), max(j - ksize // 2, 0):min(j + ksize // 2 + 1, mask.shape[1])] filtered[i, j] = np.sum(roi * kernel[:roi.shape[0], :roi.shape[1]]) return filtered def binary_opening(mask, kernel): """ Perform binary morphological opening on a binary mask using a structuring element. Parameters: mask (numpy.ndarray): Binary mask to perform opening on. kernel (numpy.ndarray): Structuring element used for opening. Returns: numpy.ndarray: Binary mask after morphological opening. """ # Create padding on all sides of the mask pad_width = [(kernel.shape[i] // 2, kernel.shape[i] // 2) for i in range(kernel.ndim)] mask_padded = np.pad(mask, pad_width, mode='constant', constant_values=0) # Apply morphological erosion using the kernel eroded = np.zeros_like(mask_padded) for i in range(mask_padded.ndim): eroded = np.maximum(eroded, np.apply_along_axis(np.roll, i, mask_padded, shift=-kernel.shape[i] // 2)) eroded = eroded[pad_width[0][0]:-pad_width[0][1], pad_width[1][0]:-pad_width[1][1]] # Create padding on all sides of the eroded mask pad_width = [(kernel.shape[i] // 2, kernel.shape[i] // 2) for i in range(kernel.ndim)] eroded_padded = np.pad(eroded, pad_width, mode='constant', constant_values=0) # Apply morphological dilation using the kernel dilated = np.zeros_like(eroded_padded) for i in range(eroded_padded.ndim): dilated = np.minimum(dilated, np.apply_along_axis(np.roll, i, eroded_padded, shift=kernel.shape[i] // 2)) dilated = dilated[pad_width[0][0]:-pad_width[0][1], pad_width[1][0]:-pad_width[1][1]] return dilated def binary_closing(mask, kernel): """ Perform binary morphological closing on a binary mask using a structuring element. Parameters: mask (numpy.ndarray): Binary mask to perform closing on. kernel (numpy.ndarray): Structuring element used for closing. Returns: numpy.ndarray: Binary mask after morphological closing. """ # Create padding on all sides of the mask pad_width = [(kernel.shape[i] // 2, kernel.shape[i] // 2) for i in range(kernel.ndim)] mask_padded = np.pad(mask, pad_width, mode='constant', constant_values=0) # Apply morphological dilation using the kernel dilated = np.zeros_like(mask_padded) for i in range(mask_padded.ndim): dilated = np.minimum(dilated, np.apply_along_axis(np.roll, i, mask_padded, shift=kernel.shape[i] // 2)) dilated = dilated[pad_width[0][0]:-pad_width[0][1], pad_width[1][0]:-pad_width[1][1]] # Create padding on all sides of the dilated mask pad_width = [(kernel.shape[i] // 2, kernel.shape[i] // 2) for i in range(kernel.ndim)] dilated_padded = np.pad(dilated, pad_width, mode='constant', constant_values=0) # Apply morphological erosion using the kernel eroded = np.zeros_like(dilated_padded) for i in range(dilated_padded.ndim): eroded = np.maximum(eroded, np.apply_along_axis(np.roll, i, dilated_padded, shift=-kernel.shape[i] // 2)) eroded = eroded[pad_width[0][0]:-pad_width[0][1], pad_width[1][0]:-pad_width[1][1]] return eroded def create_shadow_mask(image, threshold=80, range_width=50): lab_image = np.apply_along_axis(lambda x: np.dot([0.2126, 0.7152, 0.0722], x), 2, image).astype('float64') luminance_range = np.max(lab_image) - np.min(lab_image) if luminance_range < range_width: range_width = luminance_range threshold_min = np.min(lab_image) + range_width / 2 threshold_max = np.max(lab_image) - range_width / 2 if threshold < threshold_min: threshold = threshold_min elif threshold > threshold_max: threshold = threshold_max mask = np.logical_and(lab_image >= threshold - range_width / 2, lab_image <= threshold + range_width / 2) if np.sum(mask) == 0: return np.zeros_like(mask).astype(float) else: center_line = np.nanmean(np.where(mask, lab_image, np.nan), axis=0) x = np.arange(center_line.shape[0]) slope = np.zeros(center_line.shape) slope[1:-1] = (center_line[2:] - center_line[:-2]) / 2 slope[0] = slope[1] slope[-1] = slope[-2] intercept = center_line - slope * x x = np.arange(image.shape[1]) # x-coordinates of pixels y = np.arange(image.shape[0]) # y-coordinates of pixels print(y) x, y = np.meshgrid(x, y) # create 2D arrays of x- and y-coordinates # compute distances from each pixel to the shadow line dist = np.abs((y[:, :, np.newaxis] - slope[np.newaxis, np.newaxis, :] * x[:, :, np.newaxis] - intercept[np.newaxis, np.newaxis, :]) / np.sqrt(1 + slope[np.newaxis, np.newaxis, :] ** 2)) print(dist) # sigma = np.nanmedian(dist)/0.6745 # mask = np.exp(-0.5*(dist/sigma)**2) return dist def highpass_mask(img, cutoff, order=1): # Calculate the Fourier transform of the image fft_img = np.fft.fft2(img) # Shift the zero-frequency component to the center of the spectrum fft_img = np.fft.fftshift(fft_img) # Construct a highpass filter in the Fourier domain x, y = np.meshgrid(np.linspace(-1, 1, img.shape[1]), np.linspace(-1, 1, img.shape[0])) r = np.sqrt(x ** 2 + y ** 2) hp_filter = 1 - 1 / (1 + (cutoff / r) ** (2 * order)) # Apply the highpass filter to the Fourier transform of the image fft_img_hp = fft_img * hp_filter # Shift the zero-frequency component back to the corners of the spectrum fft_img_hp = np.fft.ifftshift(fft_img_hp) # Calculate the inverse Fourier transform of the highpass-filtered image img_hp = np.fft.ifft2(fft_img_hp) # Take the absolute value of the real part of the inverse Fourier transform img_hp = np.abs(np.real(img_hp)) # Normalize the highpass-filtered image to the range [0, 1] img_hp_norm = img_hp / np.max(img_hp) # Invert the highpass-filtered image to create a highpass mask mask = 1 - img_hp_norm return mask def cvtColor(hsv_img): # Assuming you have an HSV image loaded in the variable 'hsv_img' # Let's convert the image back to RGB color space h, s, v = np.split(hsv_img, 3, axis=-1) h = h.reshape(h.shape[:2]) s = s.reshape(s.shape[:2]) v = v.reshape(v.shape[:2]) c = v * s x = c * (1 - np.abs((h / 60) % 2 - 1)) m = v - c z = np.zeros_like(h) # Set up the RGB channels according to the hue value rgb_img = np.dstack(( np.where((0 <= h) & (h < 60), c, np.where((120 <= h) & (h < 180), z, np.where((240 <= h) & (h < 300), x, m))), np.where((300 <= h), c, np.where((60 <= h) & (h < 120), x, np.where((180 <= h) & (h < 240), c, m))), np.where((0 <= h) & (h < 360), v, m) )) return rgb_img def saturate(img, amount): hsv_img = np.copy(img) hsv_img = np.asarray(hsv_img, dtype=np.float32) / 255.0 # Normalize pixel values hsv_img = np.clip(hsv_img, 0, 1) # Clip values to the range [0, 1] hsv_img = np.squeeze(cv2.cvtColor(hsv_img, cv2.COLOR_RGB2HSV_FULL)) # Convert to HSV # Let's adjust the saturation of the image saturation_factor = 1.5 # Adjust this value to your preference hsv_img[..., 1] *= saturation_factor # Now let's convert the image back to RGB color space hsv_img = np.clip(hsv_img, 0, 255) # Clip values to the range [0, 255] hsv_img = np.asarray(hsv_img, dtype=np.uint8) # Convert back to uint8 rgb_img = cv2.cvtColor(hsv_img, cv2.COLOR_HSV2RGB_FULL) # Convert back to RGB # The resulting image with increased saturation is stored in the 'rgb_img' variable def rgb2ycbcr(rgb_img): # Create the conversion matrix for RGB to YCbCr conv_mat = np.array([[0.299, 0.587, 0.114], [-0.168736, -0.331264, 0.5], [0.5, -0.418688, -0.081312]]) # Reshape the input image to a 2D array of pixels pixels = rgb_img.reshape(-1, 3) # Apply the conversion matrix to the pixels ycbcr_pixels = np.dot(pixels, conv_mat.T) # Reshape the converted pixels back into the original image shape ycbcr_img = ycbcr_pixels.reshape(rgb_img.shape) # Convert the image data type to uint8 and return it return ycbcr_img.astype(np.uint8) def ycbcr2rgb(ycbcr_img): # Create the conversion matrix for YCbCr to RGB conv_mat = np.array([[1.0, 0.0, 1.402], [1.0, -0.344136, -0.714136], [1.0, 1.772, 0.0]]) # Reshape the input image to a 2D array of pixels pixels = ycbcr_img.reshape(-1, 3) # Apply the conversion matrix to the pixels rgb_pixels = np.dot(pixels, conv_mat.T) # Reshape the converted pixels back into the original image shape rgb_img = rgb_pixels.reshape(ycbcr_img.shape) # Convert the image data type to uint8 and return it return rgb_img.astype(np.uint8) def adjust_luminance(img, mask, adjustment): # Convert the input image to the YCbCr color space img = (255.0 * img).astype(np.uint8) mask = (255.0 * mask).astype(np.uint8) ycbcr_img = rgb2ycbcr(img) ycbcr_mask = rgb2ycbcr(mask) print(ycbcr_mask) print(ycbcr_img) plot_histogram(ycbcr_img, title="ycbcr") plot_histogram(ycbcr_mask, title="ycmask") # Separate the luminance channel (Y) y_channel = ycbcr_img[..., 0] y_channel_mask = ycbcr_mask[..., 0] # Apply the adjustment to the luminance channel using the mask y_adjusted = np.clip(y_channel + (adjustment * y_channel_mask), 0, 255).astype(np.uint8) # Replace the original luminance channel with the adjusted one ycbcr_img[..., 0] = y_adjusted # Convert the image back to the RGB color space and return it return ycbcr2rgb(ycbcr_img) def tonemap_reinhard(image, gamma=2.2, intensity=0.18, light_adapt=0.8): """ Tonemaps the input HDR image using the Reinhard algorithm. Args: image: The input HDR image as a NumPy array. gamma: The gamma correction value to apply to the output image. intensity: The target scene brightness. light_adapt: The adaptation rate for the brightness. Returns: The tonemapped output image as a NumPy array. """ # Convert the image to floating point RGB. #image = image.astype(np.float32) # Compute the log average luminance. lum = np.exp(np.mean(np.log(0.0001 + image))) # Normalize the image by the log average luminance. image /= lum # Apply the Reinhard tonemapping algorithm. mapped = np.zeros_like(image) mapped = intensity * (mapped / np.max(mapped)) mapped = light_adapt * (mapped * (1 + mapped / np.max(mapped) ** 2)) / (1 + mapped) mapped *= lum # Apply gamma correction to the tonemapped image. mapped = np.power(np.clip(mapped, 0, 1), 1 / gamma) # Convert the tonemapped image to 8-bit RGB. mapped = (255 * mapped).astype(np.uint8) return mapped def f(t): # Helper function to compute the nonlinear transformation function for the LAB color space delta = 6.0 / 29.0 t_thresh = delta ** 3 return np.where(t > t_thresh, t ** (1 / 3), (1 / 3) * (29 / 6) ** 2 * t + 4 / 29) def numpy_lab2rgb(lab_img): XYZ = np.zeros_like(lab_img, dtype=np.float32) XYZ[..., 0] = (lab_img[..., 0] + 16.0) / 116.0 XYZ[..., 1] = (lab_img[..., 1] / 500.0) + XYZ[..., 0] XYZ[..., 2] = XYZ[..., 0] - (lab_img[..., 2] / 200.0) mask = XYZ > 0.2068966 XYZ[mask] = XYZ[mask] ** 3 XYZ[~mask] = (XYZ[~mask] - 16.0 / 116.0) / 7.787 D50 = np.array([0.9642, 1.0, 0.8249], dtype=np.float32) RGB_linear = np.dot(XYZ, np.array([[3.2406, -1.5372, -0.4986], [-0.9689, 1.8758, 0.0415], [0.0557, -0.2040, 1.0570]], dtype=np.float32).T) RGB_linear = np.clip(RGB_linear, 0.0, 1.0) RGB_linear_D50 = RGB_linear / D50 sRGB = np.where(RGB_linear_D50 <= 0.0031308, 12.92 * RGB_linear_D50, 1.055 * (RGB_linear_D50 ** (1.0 / 2.4)) - 0.055) sRGB = np.clip(sRGB, 0.0, 1.0) return (RGB_linear_D50 * 255).astype(np.uint8) def numpy_split_lab(lab_img): L, a, b = np.rollaxis(lab_img, axis=-1) return L, a, b def numpy_merge_lab(l_channel_adjusted, a_channel, b_channel): merged_lab = np.dstack((l_channel_adjusted, a_channel, b_channel)) return merged_lab def rgb2lab(img): # Convert the RGB image to a float array with values between 0 and 1 img = img.astype(np.float32) / 255.0 # Convert the RGB image to the XYZ color space # using the transformation matrix specified by the CIE # (https://en.wikipedia.org/wiki/CIE_1931_color_space) r, g, b = np.split(img, 3, axis=2) x = 0.412453 * r + 0.357580 * g + 0.180423 * b y = 0.212671 * r + 0.715160 * g + 0.072169 * b z = 0.019334 * r + 0.119193 * g + 0.950227 * b # Convert the XYZ image to the LAB color space using the D50 white point # (https://en.wikipedia.org/wiki/Lab_color_space#Conversion_from_XYZ_to_Lab) x /= 0.950456 z /= 1.088754 l = 116.0 * f(y) - 16.0 a = 500.0 * (f(x) - f(y)) b = 200.0 * (f(y) - f(z)) # Stack the LAB channels back into a single image and return it return np.concatenate((l, a, b), axis=2) def apply_luminance_mask_lab(img, mask): # Convert the image to the LAB color space lab_img = rgb2lab(img) print(lab_img) lab_mask = rgb2lab(mask) print(lab_mask) # Split the LAB image into its channels l_channel, a_channel, b_channel = numpy_split_lab(lab_img) l_channel_mask, a_channel, b_channel = numpy_split_lab(lab_mask) # Apply the mask to the luminance channel l_channel_adjusted = l_channel + l_channel_mask # np.where(l_channel_mask > 0, l_channel - 50, l_channel) # Merge the adjusted channels back into a LAB image lab_img_adjusted = numpy_merge_lab(l_channel_adjusted, a_channel, b_channel) # Convert the adjusted image back to the RGB color space and return it return numpy_lab2rgb(lab_img_adjusted) def rgb2lab(img): # Convert the RGB image to a float array with values between 0 and 1 img = img.astype(np.float32) / 255.0 # Convert the RGB image to the XYZ color space # using the transformation matrix specified by the CIE # (https://en.wikipedia.org/wiki/CIE_1931_color_space) r, g, b = np.split(img, 3, axis=2) x = 0.412453 * r + 0.357580 * g + 0.180423 * b y = 0.212671 * r + 0.715160 * g + 0.072169 * b z = 0.019334 * r + 0.119193 * g + 0.950227 * b # Convert the XYZ image to the LAB color space using the D50 white point # (https://en.wikipedia.org/wiki/Lab_color_space#Conversion_from_XYZ_to_Lab) x /= 0.950456 z /= 1.088754 l = 116.0 * f(y) - 16.0 a = 500.0 * (f(x) - f(y)) b = 200.0 * (f(y) - f(z)) # Stack the LAB channels back into a single image and return it return np.concatenate((l, a, b), axis=2)