fluencyCAD/drawing_modules/draw_widget2d.py
2024-07-10 23:19:43 +02:00

747 lines
27 KiB
Python

import math
import re
from copy import copy
import numpy as np
from PySide6.QtWidgets import QApplication, QWidget, QMessageBox, QInputDialog
from PySide6.QtGui import QPainter, QPen, QColor
from PySide6.QtCore import Qt, QPoint, QPointF, Signal
from python_solvespace import SolverSystem, ResultFlag
class DrawingTools():
pass
class Costrains():
pass
class SketchWidget(QWidget):
constrain_done = Signal()
def __init__(self):
super().__init__()
self.line_draw_buffer = [None, None]
self.drag_buffer = [None, None]
self.main_buffer = [None, None]
self.proj_snap_points = []
self.hovered_point = None
self.selected_line = None
self.snapping_range = 20 # Range in pixels for snapping
self.zoom = 1
self.setMouseTracking(True)
self.mouse_mode = False
self.wp = None
self.solv = SolverSystem()
self.slv_points_main = []
self.slv_lines_main = []
def reset_buffers(self):
self.line_draw_buffer = [None, None]
self.drag_buffer = [None, None]
self.main_buffer = [None, None]
def set_points(self, points: list):
self.points = points
#self.update()
def create_workplane(self):
self.wp = self.solv.create_2d_base()
def create_workplane_projected(self):
self.wp = self.solv.create_2d_base()
def create_proj_lines(self, lines):
"""Lines as orientation projected from the sketch"""
for point in lines:
print(point)
x, y = point
self.proj_snap_points = lines
#point = self.solv.add_point_2d(x, y, self.wp)
"""relation_point = {} # Reinitialize the dictionary
#handle_nr = self.get_handle_nr(str(point))
#relation_point['handle_nr'] = handle_nr
#relation_point['solv_handle'] = point
relation_point['ui_point'] = QPoint(x, y)
self.slv_points_main.append(relation_point)"""
def find_duplicate_points_2d(self, edges):
points = []
seen = set()
duplicates = []
for edge in edges:
for point in edge:
# Extract only x and y coordinates
point_2d = (point[0], point[1])
if point_2d in seen:
if point_2d not in duplicates:
duplicates.append(point_2d)
else:
seen.add(point_2d)
points.append(point_2d)
return duplicates
def normal_to_quaternion(self, normal):
normal = np.array(normal)
#normal = normal / np.linalg.norm(normal)
axis = np.cross([0, 0, 1], normal)
if np.allclose(axis, 0):
axis = np.array([1, 0, 0])
else:
axis = axis / np.linalg.norm(axis) # Normalize the axis
angle = np.arccos(np.dot([0, 0, 1], normal))
qw = np.cos(angle / 2)
sin_half_angle = np.sin(angle / 2)
qx, qy, qz = axis * sin_half_angle # This will now work correctly
return qw, qx, qy, qz
def create_workplane_space(self, points, normal):
print("edges", points)
origin = self.find_duplicate_points_2d(points)
print(origin)
x, y = origin[0]
origin = QPoint(x, y)
origin_handle = self.get_handle_from_ui_point(origin)
qw, qx, qy, qz = self.normal_to_quaternion(normal)
slv_normal = self.solv.add_normal_3d(qw, qx, qy, qz)
self.wp = self.solv.add_work_plane(origin_handle, slv_normal)
print(self.wp)
def get_handle_nr(self, input_str: str) -> int:
# Define the regex pattern to extract the handle number
pattern = r"handle=(\d+)"
# Use re.search to find the handle number in the string
match = re.search(pattern, input_str)
if match:
handle_number = int(match.group(1))
print(f"Handle number: {handle_number}")
return int(handle_number)
else:
print("Handle number not found.")
return 0
def get_keys(self, d: dict, target: QPoint) -> list:
result = []
path = []
print(d)
print(target)
for k, v in d.items():
path.append(k)
if isinstance(v, dict):
self.get_keys(v, target)
if v == target:
result.append(copy(path))
path.pop()
return result
def get_handle_from_ui_point(self, ui_point: QPoint):
"""Input QPoint and you shall reveive a slvs entity handle!"""
for point in self.slv_points_main:
if ui_point == point['ui_point']:
slv_handle = point['solv_handle']
return slv_handle
def get_line_handle_from_ui_point(self, ui_point: QPoint):
"""Input Qpoint that is on a line and you shall receive the handle of the line!"""
for target_line_con in self.slv_lines_main:
if self.is_point_on_line(ui_point, target_line_con['ui_points'][0], target_line_con['ui_points'][1]):
slv_handle = target_line_con['solv_handle']
return slv_handle
def get_point_line_handles_from_ui_point(self, ui_point: QPoint) -> tuple:
"""Input Qpoint that is on a line and you shall receive the handles of the points of the line!"""
for target_line_con in self.slv_lines_main:
if self.is_point_on_line(ui_point, target_line_con['ui_points'][0], target_line_con['ui_points'][1]):
lines_to_cons = target_line_con['solv_entity_points']
return lines_to_cons
def distance(self, p1, p2):
return math.sqrt((p1.x() - p2.x())**2 + (p1.y() - p2.y())**2)
def calculate_midpoint(self, point1, point2):
mx = (point1.x() + point2.x()) // 2
my = (point1.y() + point2.y()) // 2
return QPoint(mx, my)
def is_point_on_line(self, p, p1, p2, tolerance=5):
# Calculate the lengths of the sides of the triangle
a = self.distance(p, p1)
b = self.distance(p, p2)
c = self.distance(p1, p2)
# Calculate the semi-perimeter
s = (a + b + c) / 2
# Calculate the area using Heron's formula
area = math.sqrt(s * (s - a) * (s - b) * (s - c))
# Calculate the height (perpendicular distance from the point to the line)
if c > 0:
height = (2 * area) / c
# Check if the height is within the tolerance distance to the line
if height > tolerance:
return False
# Check if the projection of the point onto the line is within the line segment
dot_product = ((p.x() - p1.x()) * (p2.x() - p1.x()) + (p.y() - p1.y()) * (p2.y() - p1.y())) / (c ** 2)
return 0 <= dot_product <= 1
else:
return None
def viewport_to_local_coord(self, qt_pos : QPoint) -> QPoint:
self.to_quadrant_coords(qt_pos)
return QPoint(self.to_quadrant_coords(qt_pos))
def check_all_points(self,) -> list:
old_points_ui = []
new_points_ui = []
for old_point_ui in self.slv_points_main:
old_points_ui.append(old_point_ui['ui_point'])
for i in range(self.solv.entity_len()):
# Iterate though full length because mixed list from SS
entity = self.solv.entity(i)
if entity.is_point_2d() and self.solv.params(entity.params):
x_tbu, y_tbu = self.solv.params(entity.params)
point_solved = QPoint(x_tbu, y_tbu)
new_points_ui.append(point_solved)
# Now we have old_points_ui and new_points_ui, let's compare them
differences = []
if len(old_points_ui) != len(new_points_ui):
print(f"Length mismatch {len(old_points_ui)} - {len(new_points_ui)}")
for index, (old_point, new_point) in enumerate(zip(old_points_ui, new_points_ui)):
if old_point != new_point:
differences.append((index, old_point, new_point))
return differences
def update_ui_points(self, point_list: list):
# Print initial state of slv_points_main
# print("Initial slv_points_main:", self.slv_points_main)
print("Change list:", point_list)
if len(point_list) > 0:
for tbu_points_idx in point_list:
# Each tbu_points_idx is a tuple: (index, old_point, new_point)
index, old_point, new_point = tbu_points_idx
# Update the point in slv_points_main
self.slv_points_main[index]['ui_point'] = new_point
# Print updated state
# print("Updated slv_points_main:", self.slv_points_main)
def check_all_lines_and_update(self,changed_points: list):
for tbu_points_idx in changed_points:
index, old_point, new_point = tbu_points_idx
for line_needs_update in self.slv_lines_main:
if old_point == line_needs_update['ui_points'][0]:
line_needs_update['ui_points'][0] = new_point
elif old_point == line_needs_update['ui_points'][1]:
line_needs_update['ui_points'][1] = new_point
def mouseReleaseEvent(self, event):
local_event_pos = self.viewport_to_local_coord(event.pos())
if event.button() == Qt.LeftButton and not self.mouse_mode:
self.drag_buffer[1] = local_event_pos
print("Le main buffer", self.drag_buffer)
if len(self.main_buffer) == 2:
entry = self.drag_buffer[0]
new_params = self.drag_buffer[1].x(), self.drag_buffer[1].y()
self.solv.set_params(entry.params, new_params)
self.solv.solve()
points_need_update = self.check_all_points()
self.update_ui_points(points_need_update)
self.check_all_lines_and_update(points_need_update)
self.update()
self.drag_buffer = [None, None]
def mousePressEvent(self, event):
local_event_pos = self.viewport_to_local_coord(event.pos())
relation_point = {
'handle_nr': None,
'solv_handle': None,
'ui_point': None,
'part_of_entity': None
}
relation_line = {
'handle_nr': None,
'solv_handle': None,
'solv_entity_points': None,
'ui_points': None
}
if event.button() == Qt.LeftButton and not self.mouse_mode:
self.drag_buffer[0] = self.get_handle_from_ui_point(self.hovered_point)
if event.button() == Qt.RightButton and self.mouse_mode:
self.reset_buffers()
if event.button() == Qt.LeftButton and self.mouse_mode == "line":
clicked_pos = local_event_pos
if not self.line_draw_buffer[0]:
self.line_draw_buffer[0] = clicked_pos
u = clicked_pos.x()
v = clicked_pos.y()
point = self.solv.add_point_2d(u, v, self.wp)
relation_point = {} # Reinitialize the dictionary
handle_nr = self.get_handle_nr(str(point))
relation_point['handle_nr'] = handle_nr
relation_point['solv_handle'] = point
relation_point['ui_point'] = clicked_pos
self.slv_points_main.append(relation_point)
print("points", self.slv_points_main)
print("lines", self.slv_lines_main)
elif self.line_draw_buffer[0]:
self.line_draw_buffer[1] = clicked_pos
u = clicked_pos.x()
v = clicked_pos.y()
point2 = self.solv.add_point_2d(u, v, self.wp)
relation_point = {} # Reinitialize the dictionary
handle_nr = self.get_handle_nr(str(point2))
relation_point['handle_nr'] = handle_nr
relation_point['solv_handle'] = point2
relation_point['ui_point'] = clicked_pos
self.slv_points_main.append(relation_point)
print("points", self.slv_points_main)
print("lines", self.slv_lines_main)
print("Buffer state", self.line_draw_buffer)
if self.line_draw_buffer[0] and self.line_draw_buffer[1]:
point_slv1 = self.get_handle_from_ui_point(self.line_draw_buffer[0])
point_slv2 = self.get_handle_from_ui_point(self.line_draw_buffer[1])
print(point_slv1)
print(point_slv2)
line = self.solv.add_line_2d(point_slv1, point_slv2, self.wp)
relation_line = {} # Reinitialize the dictionary
handle_nr_line = self.get_handle_nr(str(line))
relation_line['handle_nr'] = handle_nr_line
relation_line['solv_handle'] = line
relation_line['solv_entity_points'] = (point_slv1, point_slv2)
relation_line['ui_points'] = [self.line_draw_buffer[0], self.line_draw_buffer[1]]
# Track relationship of point in line
relation_point['part_of_entity'] = handle_nr_line
self.slv_lines_main.append(relation_line)
# Reset the buffer for the next line segment
self.line_draw_buffer[0] = self.line_draw_buffer[1]
self.line_draw_buffer[1] = None
# Track Relationship
# Points
if event.button() == Qt.LeftButton and self.mouse_mode == "pt_pt":
if self.hovered_point and not self.main_buffer[0]:
self.main_buffer[0] = self.get_handle_from_ui_point(self.hovered_point)
elif self.main_buffer[0]:
self.main_buffer[1] = self.get_handle_from_ui_point(self.hovered_point)
if self.main_buffer[0] and self.main_buffer[1]:
print("buf", self.main_buffer)
self.solv.coincident(self.main_buffer[0], self.main_buffer[1], self.wp)
if self.solv.solve() == ResultFlag.OKAY:
print("Fuck yeah")
elif self.solv.solve() == ResultFlag.DIDNT_CONVERGE:
print("Solve_failed - Converge")
elif self.solv.solve() == ResultFlag.TOO_MANY_UNKNOWNS:
print("Solve_failed - Unknowns")
elif self.solv.solve() == ResultFlag.INCONSISTENT:
print("Solve_failed - Incons")
self.constrain_done.emit()
self.main_buffer = [None, None]
if event.button() == Qt.LeftButton and self.mouse_mode == "pt_line":
print("ptline")
line_selected = None
if self.hovered_point and not self.main_buffer[1]:
self.main_buffer[0] = self.get_handle_from_ui_point(self.hovered_point)
elif self.main_buffer[0]:
self.main_buffer[1] = self.get_line_handle_from_ui_point(local_event_pos)
# Contrain point to line
if self.main_buffer[1]:
self.solv.coincident(self.main_buffer[0], self.main_buffer[1], self.wp)
if self.solv.solve() == ResultFlag.OKAY:
print("Fuck yeah")
self.constrain_done.emit()
elif self.solv.solve() == ResultFlag.DIDNT_CONVERGE:
print("Solve_failed - Converge")
elif self.solv.solve() == ResultFlag.TOO_MANY_UNKNOWNS:
print("Solve_failed - Unknowns")
elif self.solv.solve() == ResultFlag.INCONSISTENT:
print("Solve_failed - Incons")
self.constrain_done.emit()
# Clear saved_points after solve attempt
self.main_buffer = [None, None]
if event.button() == Qt.LeftButton and self.mouse_mode == "pb_con_mid":
print("ptline")
line_selected = None
if self.hovered_point and not self.main_buffer[1]:
self.main_buffer[0] = self.get_handle_from_ui_point(self.hovered_point)
elif self.main_buffer[0]:
self.main_buffer[1] = self.get_line_handle_from_ui_point(local_event_pos)
# Contrain point to line
if self.main_buffer[1]:
self.solv.midpoint(self.main_buffer[0], self.main_buffer[1], self.wp)
if self.solv.solve() == ResultFlag.OKAY:
print("Fuck yeah")
elif self.solv.solve() == ResultFlag.DIDNT_CONVERGE:
print("Solve_failed - Converge")
elif self.solv.solve() == ResultFlag.TOO_MANY_UNKNOWNS:
print("Solve_failed - Unknowns")
elif self.solv.solve() == ResultFlag.INCONSISTENT:
print("Solve_failed - Incons")
self.constrain_done.emit()
self.main_buffer = [None, None]
if event.button() == Qt.LeftButton and self.mouse_mode == "horiz":
line_selected = self.get_line_handle_from_ui_point(local_event_pos)
if line_selected:
self.solv.horizontal(line_selected, self.wp)
if self.solv.solve() == ResultFlag.OKAY:
print("Fuck yeah")
elif self.solv.solve() == ResultFlag.DIDNT_CONVERGE:
print("Solve_failed - Converge")
elif self.solv.solve() == ResultFlag.TOO_MANY_UNKNOWNS:
print("Solve_failed - Unknowns")
elif self.solv.solve() == ResultFlag.INCONSISTENT:
print("Solve_failed - Incons")
if event.button() == Qt.LeftButton and self.mouse_mode == "vert":
line_selected = self.get_line_handle_from_ui_point(local_event_pos)
if line_selected:
self.solv.vertical(line_selected, self.wp)
if self.solv.solve() == ResultFlag.OKAY:
print("Fuck yeah")
elif self.solv.solve() == ResultFlag.DIDNT_CONVERGE:
print("Solve_failed - Converge")
elif self.solv.solve() == ResultFlag.TOO_MANY_UNKNOWNS:
print("Solve_failed - Unknowns")
elif self.solv.solve() == ResultFlag.INCONSISTENT:
print("Solve_failed - Incons")
if event.button() == Qt.LeftButton and self.mouse_mode == "distance":
# Depending on selected elemnts either point line or line distance
#print("distance")
e1 = None
e2 = None
if self.hovered_point:
print("buf point")
# Get the point as UI point as buffer
self.main_buffer[0] = self.hovered_point
elif self.selected_line:
# Get the point as UI point as buffer
self.main_buffer[1] = local_event_pos
if self.main_buffer[0] and self.main_buffer[1]:
# Define point line combination
e1 = self.get_handle_from_ui_point(self.main_buffer[0])
e2 = self.get_line_handle_from_ui_point(self.main_buffer[1])
elif not self.main_buffer[0]:
# Define only line selection
e1, e2 = self.get_point_line_handles_from_ui_point(local_event_pos)
if e1 and e2:
# Ask fo the dimension and solve if both elements are present
length, ok = QInputDialog.getDouble(self, 'Distance', 'Enter a mm value:', value=100, decimals=2)
self.solv.distance(e1, e2, length, self.wp)
if self.solv.solve() == ResultFlag.OKAY:
print("Fuck yeah")
elif self.solv.solve() == ResultFlag.DIDNT_CONVERGE:
print("Solve_failed - Converge")
elif self.solv.solve() == ResultFlag.TOO_MANY_UNKNOWNS:
print("Solve_failed - Unknowns")
elif self.solv.solve() == ResultFlag.INCONSISTENT:
print("Solve_failed - Incons")
self.constrain_done.emit()
self.main_buffer = [None, None]
# Update the main point list with the new elements and draw them
points_need_update = self.check_all_points()
self.update_ui_points(points_need_update)
self.check_all_lines_and_update(points_need_update)
self.update()
def mouseMoveEvent(self, event):
local_event_pos = self.viewport_to_local_coord(event.pos())
closest_point = None
min_distance = float('inf')
threshold = 10 # Distance threshold for highlighting
for point in self.slv_points_main:
distance = (local_event_pos - point['ui_point']).manhattanLength()
if distance < threshold and distance < min_distance:
closest_point = point['ui_point']
min_distance = distance
if closest_point != self.hovered_point:
self.hovered_point = closest_point
print(self.hovered_point)
for dic in self.slv_lines_main:
p1 = dic['ui_points'][0]
p2 = dic['ui_points'][1]
if self.is_point_on_line(local_event_pos, p1, p2):
self.selected_line = p1, p2
break
else:
self.selected_line = None
self.update()
def mouseDoubleClickEvent(self, event):
pass
def drawBackgroundGrid(self, painter):
"""Draw a background grid."""
grid_spacing = 50
pen = QPen(QColor(200, 200, 200), 1, Qt.SolidLine)
painter.setPen(pen)
# Draw vertical grid lines
for x in range(-self.width() // 2, self.width() // 2, grid_spacing):
painter.drawLine(x, -self.height() // 2, x, self.height() // 2)
# Draw horizontal grid lines
for y in range(-self.height() // 2, self.height() // 2, grid_spacing):
painter.drawLine(-self.width() // 2, y, self.width() // 2, y)
def drawAxes(self, painter):
painter.setRenderHint(QPainter.Antialiasing)
# Set up pen for dashed lines
pen = QPen(Qt.gray, 1, Qt.DashLine)
painter.setPen(pen)
middle_x = self.width() // 2
middle_y = self.height() // 2
# Draw X axis as dashed line
painter.drawLine(0, middle_y, self.width(), middle_y)
# Draw Y axis as dashed line
painter.drawLine(middle_x, 0, middle_x, self.height())
# Draw tick marks
tick_length = int(10 * self.zoom)
tick_spacing = int(50 * self.zoom)
pen = QPen(Qt.gray, 1, Qt.SolidLine)
painter.setPen(pen)
# Draw tick marks on the X axis to the right and left from the middle point
for x in range(0, self.width() // 2, tick_spacing):
painter.drawLine(middle_x + x, middle_y - tick_length // 2, middle_x + x, middle_y + tick_length // 2)
painter.drawLine(middle_x - x, middle_y - tick_length // 2, middle_x - x, middle_y + tick_length // 2)
# Draw tick marks on the Y axis upwards and downwards from the middle point
for y in range(0, self.height() // 2, tick_spacing):
painter.drawLine(middle_x - tick_length // 2, middle_y + y, middle_x + tick_length // 2, middle_y + y)
painter.drawLine(middle_x - tick_length // 2, middle_y - y, middle_x + tick_length // 2, middle_y - y)
# Draw the origin point in red
painter.setPen(QPen(Qt.red, 4))
painter.drawPoint(middle_x, middle_y)
def draw_cross(self, painter, x, y, size=10):
# Set up the pen
pen = QPen(QColor('red')) # You can change the color as needed
pen.setWidth(2) # Set the line width
painter.setPen(pen)
# Calculate the endpoints of the cross
half_size = size // 2
# Draw the horizontal line
painter.drawLine(x - half_size, y, x + half_size, y)
# Draw the vertical line
painter.drawLine(x, y - half_size, x, y + half_size)
def to_quadrant_coords(self, point):
"""Translate linear coordinates to quadrant coordinates."""
center_x = self.width() // 2
center_y = self.height() // 2
quadrant_x = point.x() - center_x
quadrant_y = point.y() - center_y
return QPoint(quadrant_x, quadrant_y) / self.zoom
def paintEvent(self, event):
painter = QPainter(self)
self.drawAxes(painter)
# Translate the origin to the center of the widget
center = QPoint(self.width() // 2, self.height() // 2)
painter.translate(center)
# Apply the zoom factor
painter.scale(self.zoom, self.zoom)
pen = QPen(Qt.gray)
pen.setWidth(2 / self.zoom)
painter.setPen(pen)
# Draw points
for point in self.slv_points_main:
painter.drawEllipse(point['ui_point'], 3 / self.zoom, 3 / self.zoom)
for cross in self.proj_snap_points:
# Calculate the endpoints of the cross
self.draw_cross(painter, cross[0], cross[1], 10)
for dic in self.slv_lines_main:
p1 = dic['ui_points'][0]
p2 = dic['ui_points'][1]
painter.drawLine(p1, p2)
dis = self.distance(p1, p2)
mid = self.calculate_midpoint(p1, p2)
painter.drawText(mid, str(round(dis, 2)))
pen = QPen(Qt.green)
pen.setWidth(2)
painter.setPen(pen)
if self.solv.entity_len():
for i in range(self.solv.entity_len()):
# 3 Entitys in the beginning of the workplane normal and point
entity = self.solv.entity(i)
if entity.is_point_2d() and self.solv.params(entity.params):
x, y = self.solv.params(entity.params)
point = QPoint(x, y)
painter.drawEllipse(point, 6 / self.zoom, 6 / self.zoom)
#Highlight point hovered
if self.hovered_point:
highlight_pen = QPen(QColor(255, 0, 0))
highlight_pen.setWidth(2)
painter.setPen(highlight_pen)
painter.drawEllipse(self.hovered_point, 5 / self.zoom, 5 / self.zoom)
# Highlight line hovered
if self.selected_line and not self.hovered_point:
p1, p2 = self.selected_line
painter.setPen(QPen(Qt.red, 2))
painter.drawLine(p1, p2)
# self.drawBackgroundGrid(painter)
painter.end()
def wheelEvent(self, event):
delta = event.angleDelta().y()
self.zoom += (delta / 200) * 0.1
self.update()
def aspect_ratio(self):
return self.width() / self.height() * (1.0 / abs(self.zoom))
def clear_sketch(self):
self.slv_points_main = []
self.slv_lines_main = []
self.reset_buffers()
self.solv = SolverSystem()
# Example usage
if __name__ == "__main__":
import sys
app = QApplication(sys.argv)
window = SketchWidget()
window.setWindowTitle("Snap Line Widget")
window.resize(800, 600)
window.show()
sys.exit(app.exec())