fluencyCAD/main.py
2024-12-31 00:33:30 +01:00

817 lines
28 KiB
Python

# nuitka-project: --plugin-enable=pyside6
# nuitka-project: --plugin-enable=numpy
# nuitka-project: --standalone
# nuitka-project: --macos-create-app-bundle
import uuid
import names
from PySide6.QtCore import Qt, QPoint, Signal, QSize
from PySide6.QtWidgets import QApplication, QMainWindow, QSizePolicy, QInputDialog, QDialog, QVBoxLayout, QHBoxLayout, QLabel, QDoubleSpinBox, QCheckBox, QPushButton
from Gui import Ui_fluencyCAD # Import the generated GUI module
from drawing_modules.vtk_widget import VTKWidget
from drawing_modules.vysta_widget import PyVistaWidget
from drawing_modules.draw_widget_solve import SketchWidget
from sdf import *
from python_solvespace import SolverSystem, ResultFlag
from mesh_modules import simple_mesh, vesta_mesh, interactor_mesh
from dataclasses import dataclass, field
# main, draw_widget, gl_widget
class ExtrudeDialog(QDialog):
def __init__(self, parent=None):
super().__init__(parent)
self.setWindowTitle('Extrude Options')
def create_hline():
line = QLabel()
line.setStyleSheet("border-top: 1px solid #cccccc;") # Light grey line
line.setFixedHeight(1)
return line
layout = QVBoxLayout()
# Length input
length_layout = QHBoxLayout()
length_label = QLabel('Extrude Length (mm):')
self.length_input = QDoubleSpinBox()
self.length_input.setDecimals(2)
self.length_input.setRange(0, 1000) # Adjust range as needed
length_layout.addWidget(length_label)
length_layout.addWidget(self.length_input)
# Symmetric checkbox
self.symmetric_checkbox = QCheckBox('Symmetric Extrude')
self.invert_checkbox = QCheckBox('Invert Extrusion')
self.cut_checkbox = QCheckBox('Perform Cut')
self.union_checkbox = QCheckBox('Combine')
self.rounded_checkbox = QCheckBox('Round Edges')
self.seperator = create_hline()
# OK and Cancel buttons
button_layout = QHBoxLayout()
ok_button = QPushButton('OK')
cancel_button = QPushButton('Cancel')
ok_button.clicked.connect(self.accept)
cancel_button.clicked.connect(self.reject)
button_layout.addWidget(ok_button)
button_layout.addWidget(cancel_button)
# Add all widgets to main layout
layout.addLayout(length_layout)
layout.addWidget(self.seperator)
layout.addWidget(self.cut_checkbox)
layout.addWidget(self.union_checkbox)
layout.addWidget(self.seperator)
layout.addWidget(self.symmetric_checkbox)
layout.addWidget(self.invert_checkbox)
layout.addWidget(self.seperator)
layout.addWidget(self.rounded_checkbox)
layout.addLayout(button_layout)
self.setLayout(layout)
def get_values(self):
return self.length_input.value(), self.symmetric_checkbox.isChecked() ,self.invert_checkbox.isChecked(), self.cut_checkbox.isChecked(), self.union_checkbox.isChecked(), self.rounded_checkbox.isChecked()
class MainWindow(QMainWindow):
send_command = Signal(str)
def __init__(self):
super().__init__()
# Set up the UI from the generated GUI module
self.ui = Ui_fluencyCAD()
self.ui.setupUi(self)
self.custom_3D_Widget = VTKWidget()
layout = self.ui.gl_box.layout()
layout.addWidget(self.custom_3D_Widget)
size_policy = QSizePolicy(QSizePolicy.MinimumExpanding, QSizePolicy.MinimumExpanding)
#self.custom_3D_Widget.setSizePolicy(size_policy)
self.sketchWidget = SketchWidget()
layout2 = self.ui.sketch_tab.layout() # Get the layout of self.ui.gl_canvas
layout2.addWidget(self.sketchWidget)
size_policy = QSizePolicy(QSizePolicy.MinimumExpanding, QSizePolicy.MinimumExpanding)
self.sketchWidget.setSizePolicy(size_policy)
### Main Model -OLD ?
"""self.model = {
'sketches': {},
'operation': {},
}"""
self.list_selected = []
#self.ui.pb_apply_code.pressed.connect(self.check_current_tab)
self.ui.sketch_list.currentItemChanged.connect(self.on_item_changed)
self.ui.sketch_list.itemChanged.connect(self.draw_mesh)
### Sketches
self.ui.pb_origin_wp.pressed.connect(self.add_new_sketch_origin)
self.ui.pb_origin_face.pressed.connect(self.add_new_sketch_wp)
self.ui.pb_nw_sktch.pressed.connect(self.add_sketch)
self.ui.pb_del_sketch.pressed.connect(self.del_sketch)
self.ui.pb_edt_sktch.pressed.connect(self.edit_sketch)
self.ui.pb_flip_face.pressed.connect(self.on_flip_face)
###Modes
self.ui.pb_linetool.pressed.connect(self.act_line_mode)
self.ui.pb_con_ptpt.pressed.connect(self.act_constrain_pt_pt_mode)
self.ui.pb_con_line.pressed.connect(self.act_constrain_pt_line_mode)
self.ui.pb_con_horiz.pressed.connect(self.act_constrain_horiz_line_mode)
self.ui.pb_con_vert.pressed.connect(self.act_constrain_vert_line_mode)
self.ui.pb_con_dist.pressed.connect(self.act_constrain_distance_mode)
self.ui.pb_con_mid.pressed.connect(self.act_constrain_mid_point_mode)
### Operations
self.ui.pb_extrdop.pressed.connect(self.send_extrude)
self.ui.pb_cutop.pressed.connect(self.send_cut)
self.ui.pb_del_body.pressed.connect(self.del_body)
self.sketchWidget.constrain_done.connect(self.draw_op_complete)
self.setFocusPolicy(Qt.StrongFocus)
self.send_command.connect(self.custom_3D_Widget.on_receive_command)
self.ui.actionNew_Project.triggered.connect(self.new_project)
self.project = Project()
self.new_project()
### COMPOS
### COMPOS
self.ui.new_compo.pressed.connect(self.new_component)
"""Project -> (Timeline) -> Component -> Sketch -> Body / Interactor -> Connector -> Assembly -> PB Render"""
def on_flip_face(self):
self.send_command.emit("flip")
def act_line_mode(self):
if not self.ui.pb_linetool.isChecked():
self.sketchWidget.mouse_mode = 'line'
else:
self.sketchWidget.mouse_mode = None
self.sketchWidget.line_draw_buffer = [None, None]
def act_constrain_pt_pt_mode(self):
if not self.ui.pb_con_ptpt.isChecked():
self.sketchWidget.mouse_mode = 'pt_pt'
else:
self.sketchWidget.mouse_mode = None
def act_constrain_pt_line_mode(self):
if not self.ui.pb_con_line.isChecked():
self.sketchWidget.mouse_mode = 'pt_line'
else:
self.sketchWidget.mouse_mode = None
def act_constrain_horiz_line_mode(self):
if not self.ui.pb_con_horiz.isChecked():
self.sketchWidget.mouse_mode = 'horiz'
else:
self.sketchWidget.mouse_mode = None
def act_constrain_vert_line_mode(self):
if not self.ui.pb_con_vert.isChecked():
self.sketchWidget.mouse_mode = 'vert'
else:
self.sketchWidget.mouse_mode = None
def act_constrain_distance_mode(self):
if not self.ui.pb_con_dist.isChecked():
self.sketchWidget.mouse_mode = 'distance'
else:
self.sketchWidget.mouse_mode = None
def act_constrain_mid_point_mode(self):
if not self.ui.pb_con_mid.isChecked():
self.sketchWidget.mouse_mode = 'pb_con_mid'
else:
self.sketchWidget.mouse_mode = None
def draw_op_complete(self):
# safely disable the line modes
self.ui.pb_linetool.setChecked(False)
self.ui.pb_con_ptpt.setChecked(False)
self.ui.pb_con_line.setChecked(False)
self.ui.pb_con_dist.setChecked(False)
self.ui.pb_con_mid.setChecked(False)
self.ui.pb_con_perp.setChecked(False)
self.sketchWidget.mouse_mode = None
self.sketchWidget.reset_buffers()
def draw_mesh(self):
name = self.ui.body_list.currentItem().text()
print("selected_for disp", name)
model = self.project.timeline[-1].body[name].sdf_body
vesta = vesta_mesh
model_data = vesta.generate_mesh_from_sdf(model, resolution=64, threshold=0)
vertices, faces = model_data
vesta.save_mesh_as_stl(vertices, faces, 'test.stl')
self.custom_3D_Widget.render_from_points_direct_with_faces(vertices, faces)
def on_item_changed(self, current_item, previous_item):
if current_item:
name = current_item.text()
#self.view_update()
print(f"Selected item: {name}")
def new_project(self):
print("New project")
timeline = []
self.project.timeline = timeline
self.new_component()
def new_component(self):
print("Creating a new component...")
# Lazily initialize self.compo_layout if it doesn't exist
if not hasattr(self, 'compo_layout'):
print("Initializing compo_layout...")
self.compo_layout = QHBoxLayout()
# Ensure the QGroupBox has a layout
if not self.ui.compo_box.layout():
self.ui.compo_box.setLayout(QVBoxLayout()) # Set a default layout for QGroupBox
# Add the horizontal layout to the QGroupBox's layout
self.ui.compo_box.layout().addLayout(self.compo_layout)
# Align the layout to the left
self.compo_layout.setAlignment(Qt.AlignLeft)
# Create and initialize a new Component
compo = Component()
compo.id = f"Component {len(self.project.timeline) + 1}"
compo.descript = "Initial Component"
compo.sketches = {}
compo.body = {}
self.project.timeline.append(compo)
# Create a button for the new component
button = QPushButton()
button.setToolTip(compo.id)
button.setText(str(len(self.project.timeline)))
button.setFixedSize(QSize(40, 40)) # Set button size
# Add the button to the layout
self.compo_layout.addWidget(button)
print(f"Added component {compo.id} to the layout.")
def add_new_sketch_origin(self):
name = f"sketches-{str(names.get_first_name())}"
sketch = Sketch()
sketch.id = name
sketch.origin = [0,0,0]
self.sketchWidget.reset_buffers()
self.sketchWidget.create_sketch(sketch)
def add_new_sketch_wp(self):
## Sketch projected from 3d view into 2d
name = f"sketches-{str(names.get_first_name())}"
sketch = Sketch()
sketch.id = name
sketch.origin = self.custom_3D_Widget.centroid
sketch.normal = self.custom_3D_Widget.selected_normal
sketch.slv_points = []
sketch.slv_lines = []
sketch.proj_points = self.custom_3D_Widget.project_tosketch_points
sketch.proj_lines = self.custom_3D_Widget.project_tosketch_lines
self.sketchWidget.reset_buffers()
self.sketchWidget.create_sketch(sketch)
self.sketchWidget.create_workplane_projected()
if not sketch.proj_lines:
self.sketchWidget.convert_proj_points(sketch.proj_points)
self.sketchWidget.convert_proj_lines(sketch.proj_lines)
self.sketchWidget.update()
# CLear all selections after it has been projected
self.custom_3D_Widget.project_tosketch_points.clear()
self.custom_3D_Widget.project_tosketch_lines.clear()
self.custom_3D_Widget.clear_actors_projection()
self.custom_3D_Widget.clear_actors_normals()
def add_sketch(self):
"""
:return:
"""
sketch = Sketch()
sketch_from_widget = self.sketchWidget.get_sketch()
points = sketch_from_widget.points
sketch.convert_points_for_sdf(points)
sketch.id = sketch_from_widget.id
sketch.filter_lines_for_interactor(sketch_from_widget.lines)
# Register sketch to timeline
self.project.timeline[-1].sketches[sketch.id] = sketch
# Add Item to slection menu
self.ui.sketch_list.addItem(sketch.id)
# Deactivate drawing
self.ui.pb_linetool.setChecked(False)
self.sketchWidget.line_mode = False
items = self.ui.sketch_list.findItems(sketch.id, Qt.MatchExactly)[0]
self.ui.sketch_list.setCurrentItem(items)
def edit_sketch(self):
name = self.ui.sketch_list.currentItem().text()
selected = self.ui.sketch_list.currentItem()
name = selected.text()
# TODO: add selected element from timeline
sel_compo = self.project.timeline[-1]
sketch = sel_compo.sketches[name]
self.sketchWidget.set_sketch(sketch)
self.sketchWidget.update()
def del_sketch(self):
# Old
print("Deleting")
name = self.ui.sketch_list.currentItem() # Get the current item
print(self.model)
if name is not None:
item_name = name.text()
print("obj_name", item_name)
# Check if the 'sketches' key exists in the model dictionary
if 'sketches' in self.model and item_name in self.model['sketches']:
if self.model['sketches'][item_name]['id'] == item_name:
row = self.ui.sketch_list.row(name) # Get the row of the current item
self.ui.sketch_list.takeItem(row) # Remove the item from the list widget
self.sketchWidget.clear_sketch()
self.model['sketches'].pop(item_name) # Remove the item from the sketches dictionary
print(f"Removed sketches: {item_name}")
# Check if the 'operation' key exists in the model dictionary
elif 'operation' in self.model and item_name in self.model['operation']:
if self.model['operation'][item_name]['id'] == item_name:
row = self.ui.sketch_list.row(name) # Get the row of the current item
self.ui.sketch_list.takeItem(row) # Remove the item from the list widget
self.sketchWidget.clear_sketch()
self.model['operation'].pop(item_name) # Remove the item from the operation dictionary
print(f"Removed operation: {item_name}")
else:
print(f"Item '{item_name}' not found in either 'sketches' or 'operation' dictionary.")
else:
print("No item selected.")
def update_body(self):
pass
def del_body(self):
print("Deleting")
name = self.ui.body_list.currentItem() # Get the current item
if name is not None:
item_name = name.text()
print("obj_name", item_name)
# Check if the 'operation' key exists in the model dictionary
if 'operation' in self.model and item_name in self.model['operation']:
if self.model['operation'][item_name]['id'] == item_name:
row = self.ui.body_list.row(name) # Get the row of the current item
self.ui.body_list.takeItem(row) # Remove the item from the list widget
self.model['operation'].pop(item_name) # Remove the item from the operation dictionary
print(f"Removed operation: {item_name}")
self.custom_3D_Widget.clear_mesh()
def send_extrude(self):
# Dialog input
is_symmetric = None
length = None
invert = None
selected = self.ui.sketch_list.currentItem()
name = selected.text()
# TODO: add selected element from timeline
sel_compo = self.project.timeline[-1]
#print(sel_compo)
sketch = sel_compo.sketches[name]
#print(sketch)
points = sketch.sdf_points
if points[-1] == points[0]:
#detect loop that causes problems in mesh generation
del points[-1]
dialog = ExtrudeDialog(self)
if dialog.exec():
length, is_symmetric, invert, cut, union_with, rounded = dialog.get_values()
#print(f"Extrude length: {length}, Symmetric: {is_symmetric} Invert: {invert}")
else:
length = 0
#print("Extrude cancelled")
normal = self.custom_3D_Widget.selected_normal
#print("Normie enter", normal)
if normal is None:
normal = [0, 0, 1]
centroid = self.custom_3D_Widget.centroid
if centroid is None:
centroid = [0, 0, 0]
else:
centroid = list(centroid)
#print("This centroid ", centroid)
sketch.origin = centroid
sketch.normal = normal
f = sketch.extrude(length, is_symmetric, invert, 0)
# Create body element and assign known stuff
name_op = f"extrd-{name}"
sel_compo.body
body = Body()
body.sketch = sketch #we add the sketches for reference here
body.id = name_op
body.sdf_body = f
### Interactor
interactor = Interactor()
interactor.add_lines_for_interactor(sketch.interactor_lines)
if not invert:
edges = interactor_mesh.generate_mesh(interactor.lines, 0, length)
else:
edges = interactor_mesh.generate_mesh(interactor.lines, 0, -length)
body.interactor = interactor
sel_compo.body[name_op] = body
offset_vector = interactor.vector_to_centroid(None, centroid, normal)
#print("off_ved", offset_vector)
if len(offset_vector) == 0 :
offset_vector = [0, 0, 0]
self.custom_3D_Widget.load_interactor_mesh(edges, offset_vector)
self.ui.body_list.addItem(name_op)
items = self.ui.body_list.findItems(name_op, Qt.MatchExactly)[0]
self.ui.body_list.setCurrentItem(items)
self.draw_mesh()
def send_cut(self):
name = self.ui.body_list.currentItem().text()
points = self.model['operation'][name]['sdf_object']
self.list_selected.append(points)
if len(self.list_selected) == 2:
geo = Geometry()
f = geo.cut_shapes(self.list_selected[0], self.list_selected[1] )
element = {
'id': name,
'type': 'cut',
'sdf_object': f,
}
name_op = f"cut-{name}"
self.model['operation'][name_op] = element
self.ui.body_list.addItem(name_op)
items = self.ui.body_list.findItems(name_op, Qt.MatchExactly)
self.ui.body_list.setCurrentItem(items[-1])
self.custom_3D_Widget.clear_body_actors()
self.draw_mesh()
elif len(self.list_selected) > 2:
self.list_selected.clear()
else:
print("mindestens 2!")
def load_and_render(self, file):
self.custom_3D_Widget.load_stl(file)
self.custom_3D_Widget.update()
@dataclass
class Timeline:
"""Timeline """
timeline: list = None
"""add to time,
remove from time, """
class Assembly:
"""Connecting Components in 3D space based on slvs solver"""
@dataclass
class Component:
"""The base container combining all related elements
id : The unique ID
sketches : the base sketches, bodys can contain additonal sketches for features
interactor : A smiplified model used as interactor
body : The body class that contains the actual 3d information
connector : Vector and Nomral information for assembly
descript : a basic description
materil : Speicfy a material for pbr rendering
"""
id = None
sketches: dict = None
body: dict = None
connector = None
# Description
descript = None
# PBR
material = None
class Connector:
"""An Element that contains vectors and or normals as connection points.
These connection points can exist independently of bodies and other elements"""
id = None
vector = None
normal = None
class Code:
"""A class that holds all information from the code based approach"""
command_list = None
def generate_mesh_from_code(self, code_text: str):
local_vars = {}
try:
print(code_text)
exec(code_text, globals(), local_vars)
# Retrieve the result from the captured local variables
result = local_vars.get('result')
print("Result:", result)
except Exception as e:
print("Error executing code:", e)
@dataclass
class Sketch:
"""All of the 2D Information of a sketches"""
id = None
# Space Information
origin = None
slv_plane = None
normal = None
# Points in UI form the sketches widget
ui_points: list = None
ui_lines: list = None
# Points cartesian coming as result of the solver
slv_points: list = None
slv_lines: list = None
sdf_points: list = None
interactor_lines: list = None
# Points coming back from the 3D-Widget as projection to draw on
proj_points: list = None
proj_lines: list = None
# Workingplane
working_plane = None
def translate_points_tup(self, point: QPoint):
"""QPoints from Display to mesh data
input: Qpoints
output: Tuple X,Y
"""
if isinstance(point, QPoint):
return point.x(), point.y()
def vector_to_centroid(self, shape_center, centroid, normal):
if not shape_center:
# Calculate the current center of the shape
shape_center = [0, 0, 0]
# Calculate the vector from the shape's center to the centroid
center_to_centroid = np.array(centroid) - np.array(shape_center)
# Project this vector onto the normal to get the required translation along the normal
translation_along_normal = np.dot(center_to_centroid, normal) * normal
return translation_along_normal
def angle_between_normals(self, normal1, normal2):
# Ensure the vectors are normalized
n1 = normal1 / np.linalg.norm(normal1)
n2 = normal2 / np.linalg.norm(normal2)
# Compute the dot product
dot_product = np.dot(n1, n2)
# Clip the dot product to the valid range [-1, 1]
dot_product = np.clip(dot_product, -1.0, 1.0)
# Compute the angle in radians
angle_rad = np.arccos(dot_product)
# Convert to degrees if needed
angle_deg = np.degrees(angle_rad)
print("Angle deg", angle_deg)
return angle_rad
def offset_syn(self, f, length):
f = f.translate((0,0, length / 2))
return f
def distance(self, p1, p2):
"""Calculate the distance between two points."""
print("p1", p1)
print("p2", p2)
return math.sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2)
def convert_points_for_sdf(self, points):
points_for_sdf = []
for point in points:
if point.is_helper is False:
print("point", point)
points_for_sdf.append(self.translate_points_tup(point.ui_point))
self.sdf_points = points_for_sdf
def filter_lines_for_interactor(self, lines):
### Filter lines that are not meant to be drawn for the interactor like contruction lines
filtered_lines = []
for line in lines:
if not line.is_helper:
filtered_lines.append(line)
self.interactor_lines = filtered_lines
def extrude(self, height: float, symet: bool = True, invert: bool = False, offset_length: float = None):
"""
Extrude a 2D shape into 3D, orient it along the normal, and position it relative to the centroid.
"""
# Normalize the normal vector
normal = np.array(self.normal)
normal = normal / np.linalg.norm(self.normal)
# Create the 2D shape
f = polygon(self.sdf_points)
# Extrude the shape along the Z-axis
f = f.extrude(height)
# Center the shape along its extrusion axis
f = f.translate((0, 0, height / 2))
# Orient the shape along the normal vector
f = f.orient(normal)
offset_vector = self.vector_to_centroid(None, self.origin, normal)
# Adjust the offset vector by subtracting the inset distance along the normal direction
adjusted_offset = offset_vector - (normal * height)
if invert:
# Translate the shape along the adjusted offset vector
f = f.translate(adjusted_offset)
else:
f = f.translate(offset_vector)
# If offset_length is provided, adjust the offset_vector
if offset_length is not None:
# Check if offset_vector is not a zero vector
offset_vector_magnitude = np.linalg.norm(offset_vector)
if offset_vector_magnitude > 1e-10: # Use a small threshold to avoid floating-point issues
# Normalize the offset vector
offset_vector_norm = offset_vector / offset_vector_magnitude
# Scale the normalized vector by the desired length
offset_vector = offset_vector_norm * offset_length
f = f.translate(offset_vector)
else:
print("Warning: Offset vector has zero magnitude. Using original vector.")
# Translate the shape along the adjusted offset vector
return f
@dataclass
class Interactor:
"""Helper mesh consisting of edges for selection"""
lines = None
faces = None
body = None
def translate_points_tup(self, point: QPoint):
"""QPoints from Display to mesh data
input: Qpoints
output: Tuple X,Y
"""
if isinstance(point, QPoint):
return point.x(), point.y()
def vector_to_centroid(self, shape_center, centroid, normal):
if not shape_center:
# Calculate the current center of the shape
shape_center = [0, 0, 0]
# Calculate the vector from the shape's center to the centroid
center_to_centroid = np.array(centroid) - np.array(shape_center)
# Project this vector onto the normal to get the required translation along the normal
translation_along_normal = np.dot(center_to_centroid, normal) * normal
return translation_along_normal
def add_lines_for_interactor(self, input_lines: list):
"""Takes Line2D objects from the sketch widget and preparesit for interactor mesh.
Translates coordinates."""
points_for_interact = []
for point_to_poly in input_lines:
from_coord_start = window.sketchWidget.from_quadrant_coords_no_center(point_to_poly.crd1.ui_point)
from_coord_end = window.sketchWidget.from_quadrant_coords_no_center(point_to_poly.crd2.ui_point)
start_draw = self.translate_points_tup(from_coord_start)
end_draw = self.translate_points_tup(from_coord_end)
line = start_draw, end_draw
points_for_interact.append(line)
print("packed_lines", points_for_interact)
self.lines = points_for_interact
@dataclass
class Body:
"""The actual body as sdf3 object"""
id = None
sketch = None
height = None
interactor = None
sdf_body = None
def mirror_body(self, sdf_object3d):
f = sdf_object3d.rotate(pi)
return f
def cut_shapes(self, sdf_object1, sdf_object2):
f = difference(sdf_object1, sdf_object2) # equivalent
return f
class Output:
def export_mesh(self, sdf_object):
"""FINAL EXPORT"""
result_points = sdf_object.generate()
write_binary_stl('out.stl', result_points)
def generate_mesh_from_code(self, code_text: str):
local_vars = {}
try:
print(code_text)
exec(code_text, globals(), local_vars)
# Retrieve the result from the captured local variables
result = local_vars.get('result')
print("Result:", result)
except Exception as e:
print("Error executing code:", e)
class Project:
"""Project -> Timeline -> Component -> Sketch -> Body / Interactor -> Connector -> Assembly -> PB Render"""
timeline: Timeline = None
assembly: Assembly = None
if __name__ == "__main__":
app = QApplication()
window = MainWindow()
window.show()
app.exec()