fluencyCAD/mesh_modules/vesta_mesh.py
2024-07-08 22:14:25 +02:00

119 lines
3.9 KiB
Python

import numpy as np
from skimage import measure
import multiprocessing
from functools import partial
from multiprocessing.pool import ThreadPool
import itertools
import time
def _cartesian_product(*arrays):
la = len(arrays)
dtype = np.result_type(*arrays)
arr = np.empty([len(a) for a in arrays] + [la], dtype=dtype)
for i, a in enumerate(np.ix_(*arrays)):
arr[..., i] = a
return arr.reshape(-1, la)
class VESTA:
def __init__(self, sdf, bounds=None, resolution=64, threshold=0.0, workers=None):
self.sdf = sdf
self.bounds = bounds
self.resolution = resolution
self.threshold = threshold
self.workers = workers or multiprocessing.cpu_count()
def _estimate_bounds(self):
s = 16
x0 = y0 = z0 = -1e9
x1 = y1 = z1 = 1e9
prev = None
for i in range(32):
X = np.linspace(x0, x1, s)
Y = np.linspace(y0, y1, s)
Z = np.linspace(z0, z1, s)
d = np.array([X[1] - X[0], Y[1] - Y[0], Z[1] - Z[0]])
threshold = np.linalg.norm(d) / 2
if threshold == prev:
break
prev = threshold
P = _cartesian_product(X, Y, Z)
volume = self.sdf(P).reshape((len(X), len(Y), len(Z)))
where = np.argwhere(np.abs(volume) <= threshold)
if where.size == 0:
continue
x1, y1, z1 = (x0, y0, z0) + where.max(axis=0) * d + d / 2
x0, y0, z0 = (x0, y0, z0) + where.min(axis=0) * d - d / 2
if prev is None:
raise ValueError("Failed to estimate bounds. No points found within any threshold.")
return ((x0, y0, z0), (x1, y1, z1))
def _vesta_worker(self, chunk):
x0, x1, y0, y1, z0, z1 = chunk
X = np.linspace(x0, x1, self.resolution)
Y = np.linspace(y0, y1, self.resolution)
Z = np.linspace(z0, z1, self.resolution)
P = _cartesian_product(X, Y, Z)
V = self.sdf(P).reshape((self.resolution, self.resolution, self.resolution))
try:
verts, faces, _, _ = measure.marching_cubes(V, self.threshold)
except RuntimeError:
# Return empty arrays if marching_cubes fails
return np.array([]), np.array([])
# Scale and translate vertices to match the chunk's bounds
verts = verts / (self.resolution - 1)
verts[:, 0] = verts[:, 0] * (x1 - x0) + x0
verts[:, 1] = verts[:, 1] * (y1 - y0) + y0
verts[:, 2] = verts[:, 2] * (z1 - z0) + z0
return verts, faces
def _merge_meshes(self, results):
all_verts = []
all_faces = []
offset = 0
for verts, faces in results:
if len(verts) > 0 and len(faces) > 0:
all_verts.append(verts)
all_faces.append(faces + offset)
offset += len(verts)
if not all_verts or not all_faces:
return np.array([]), np.array([])
return np.vstack(all_verts), np.vstack(all_faces)
def generate_mesh(self):
if self.bounds is None:
self.bounds = self._estimate_bounds()
(x0, y0, z0), (x1, y1, z1) = self.bounds
chunks = [
(x0, x1, y0, y1, z0, z1)
]
with ThreadPool(self.workers) as pool:
results = pool.map(self._vesta_worker, chunks)
verts, faces = self._merge_meshes(results)
return verts, faces
def generate_mesh_from_sdf(sdf, bounds=None, resolution=64, threshold=0.0, workers=None):
vesta = VESTA(sdf, bounds, resolution, threshold, workers)
return vesta.generate_mesh()
# Helper function to save the mesh as an STL file
def save_mesh_as_stl(vertices, faces, filename):
from stl import mesh
# Create the mesh
cube = mesh.Mesh(np.zeros(faces.shape[0], dtype=mesh.Mesh.dtype))
for i, f in enumerate(faces):
for j in range(3):
cube.vectors[i][j] = vertices[f[j], :]
# Write the mesh to file
cube.save(filename)